Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reean | Unicode version |
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
reean.1 | |
reean.2 |
Ref | Expression |
---|---|
reean |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 576 | . . . 4 | |
2 | 1 | 2exbii 1594 | . . 3 |
3 | nfv 1516 | . . . . 5 | |
4 | reean.1 | . . . . 5 | |
5 | 3, 4 | nfan 1553 | . . . 4 |
6 | nfv 1516 | . . . . 5 | |
7 | reean.2 | . . . . 5 | |
8 | 6, 7 | nfan 1553 | . . . 4 |
9 | 5, 8 | eean 1919 | . . 3 |
10 | 2, 9 | bitri 183 | . 2 |
11 | r2ex 2486 | . 2 | |
12 | df-rex 2450 | . . 3 | |
13 | df-rex 2450 | . . 3 | |
14 | 12, 13 | anbi12i 456 | . 2 |
15 | 10, 11, 14 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wnf 1448 wex 1480 wcel 2136 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 |
This theorem is referenced by: reeanv 2635 |
Copyright terms: Public domain | W3C validator |