Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reeanv | Unicode version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | nfv 1521 | . 2 | |
3 | 1, 2 | reean 2638 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 |
This theorem is referenced by: 3reeanv 2640 fliftfun 5775 tfrlem5 6293 eroveu 6604 erovlem 6605 xpf1o 6822 genprndl 7483 genprndu 7484 ltpopr 7557 ltsopr 7558 cauappcvgprlemdisj 7613 caucvgprlemdisj 7636 caucvgprprlemdisj 7664 exbtwnzlemex 10206 rebtwn2z 10211 rexanre 11184 summodc 11346 prodmodclem2 11540 prodmodc 11541 dvds2lem 11765 odd2np1 11832 opoe 11854 omoe 11855 opeo 11856 omeo 11857 gcddiv 11974 divgcdcoprmex 12056 pcqmul 12257 pcadd 12293 mul4sq 12346 tgcl 12858 restbasg 12962 txuni2 13050 txbas 13052 txcnp 13065 blin2 13226 tgqioo 13341 mul2sq 13746 2sqlem5 13749 |
Copyright terms: Public domain | W3C validator |