| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | Unicode version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | nfv 1542 |
. 2
| |
| 3 | 1, 2 | reean 2666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: 3reeanv 2668 fliftfun 5844 tfrlem5 6373 eroveu 6686 erovlem 6687 xpf1o 6906 genprndl 7590 genprndu 7591 ltpopr 7664 ltsopr 7665 cauappcvgprlemdisj 7720 caucvgprlemdisj 7743 caucvgprprlemdisj 7771 exbtwnzlemex 10341 rebtwn2z 10346 rexanre 11387 summodc 11550 prodmodclem2 11744 prodmodc 11745 dvds2lem 11970 odd2np1 12040 opoe 12062 omoe 12063 opeo 12064 omeo 12065 gcddiv 12196 divgcdcoprmex 12280 pcqmul 12482 pcadd 12519 mul4sq 12573 4sqlem12 12581 dvdsrtr 13667 unitgrp 13682 lss1d 13949 znidom 14223 tgcl 14310 restbasg 14414 txuni2 14502 txbas 14504 txcnp 14517 blin2 14678 tgqioo 14801 plyadd 14997 plymul 14998 mul2sq 15367 2sqlem5 15370 |
| Copyright terms: Public domain | W3C validator |