| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | Unicode version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | nfv 1574 |
. 2
| |
| 3 | 1, 2 | reean 2700 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: 3reeanv 2702 fliftfun 5920 tfrlem5 6460 eroveu 6773 erovlem 6774 xpf1o 7005 genprndl 7708 genprndu 7709 ltpopr 7782 ltsopr 7783 cauappcvgprlemdisj 7838 caucvgprlemdisj 7861 caucvgprprlemdisj 7889 exbtwnzlemex 10469 rebtwn2z 10474 rexanre 11731 summodc 11894 prodmodclem2 12088 prodmodc 12089 dvds2lem 12314 odd2np1 12384 opoe 12406 omoe 12407 opeo 12408 omeo 12409 gcddiv 12540 divgcdcoprmex 12624 pcqmul 12826 pcadd 12863 mul4sq 12917 4sqlem12 12925 dvdsrtr 14065 unitgrp 14080 lss1d 14347 znidom 14621 tgcl 14738 restbasg 14842 txuni2 14930 txbas 14932 txcnp 14945 blin2 15106 tgqioo 15229 plyadd 15425 plymul 15426 mul2sq 15795 2sqlem5 15798 uhgr2edg 16004 |
| Copyright terms: Public domain | W3C validator |