| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | Unicode version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | nfv 1551 |
. 2
| |
| 3 | 1, 2 | reean 2675 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: 3reeanv 2677 fliftfun 5867 tfrlem5 6402 eroveu 6715 erovlem 6716 xpf1o 6943 genprndl 7636 genprndu 7637 ltpopr 7710 ltsopr 7711 cauappcvgprlemdisj 7766 caucvgprlemdisj 7789 caucvgprprlemdisj 7817 exbtwnzlemex 10394 rebtwn2z 10399 rexanre 11564 summodc 11727 prodmodclem2 11921 prodmodc 11922 dvds2lem 12147 odd2np1 12217 opoe 12239 omoe 12240 opeo 12241 omeo 12242 gcddiv 12373 divgcdcoprmex 12457 pcqmul 12659 pcadd 12696 mul4sq 12750 4sqlem12 12758 dvdsrtr 13896 unitgrp 13911 lss1d 14178 znidom 14452 tgcl 14569 restbasg 14673 txuni2 14761 txbas 14763 txcnp 14776 blin2 14937 tgqioo 15060 plyadd 15256 plymul 15257 mul2sq 15626 2sqlem5 15629 |
| Copyright terms: Public domain | W3C validator |