Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reeanv | Unicode version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . 2 | |
2 | nfv 1505 | . 2 | |
3 | 1, 2 | reean 2622 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wrex 2433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 |
This theorem is referenced by: 3reeanv 2624 fliftfun 5737 tfrlem5 6251 eroveu 6560 erovlem 6561 xpf1o 6778 genprndl 7420 genprndu 7421 ltpopr 7494 ltsopr 7495 cauappcvgprlemdisj 7550 caucvgprlemdisj 7573 caucvgprprlemdisj 7601 exbtwnzlemex 10127 rebtwn2z 10132 rexanre 11097 summodc 11257 prodmodclem2 11451 prodmodc 11452 dvds2lem 11672 odd2np1 11737 opoe 11759 omoe 11760 opeo 11761 omeo 11762 gcddiv 11874 divgcdcoprmex 11950 tgcl 12403 restbasg 12507 txuni2 12595 txbas 12597 txcnp 12610 blin2 12771 tgqioo 12886 |
Copyright terms: Public domain | W3C validator |