ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reelprrecn Unicode version

Theorem reelprrecn 7965
Description: Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
reelprrecn  |-  RR  e.  { RR ,  CC }

Proof of Theorem reelprrecn
StepHypRef Expression
1 reex 7964 . 2  |-  RR  e.  _V
21prid1 3713 1  |-  RR  e.  { RR ,  CC }
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   {cpr 3608   CCcc 7828   RRcr 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7921  ax-resscn 7922
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614
This theorem is referenced by:  dvfpm  14561  dvmptcjx  14589
  Copyright terms: Public domain W3C validator