ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reelprrecn Unicode version

Theorem reelprrecn 7414
Description: Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
reelprrecn  |-  RR  e.  { RR ,  CC }

Proof of Theorem reelprrecn
StepHypRef Expression
1 reex 7413 . 2  |-  RR  e.  _V
21prid1 3531 1  |-  RR  e.  { RR ,  CC }
Colors of variables: wff set class
Syntax hints:    e. wcel 1436   {cpr 3432   CCcc 7285   RRcr 7286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-cnex 7373  ax-resscn 7374
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-sn 3437  df-pr 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator