ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptcjx Unicode version

Theorem dvmptcjx 15068
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
Hypotheses
Ref Expression
dvmptcj.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptcj.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptcj.da  |-  ( ph  ->  ( RR  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptcjx.x  |-  ( ph  ->  X  C_  RR )
Assertion
Ref Expression
dvmptcjx  |-  ( ph  ->  ( RR  _D  (
x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
Distinct variable groups:    ph, x    x, V    x, X
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dvmptcjx
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dvmptcj.a . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
21fmpttd 5720 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
3 dvmptcjx.x . . 3  |-  ( ph  ->  X  C_  RR )
4 dvcj 15053 . . 3  |-  ( ( ( x  e.  X  |->  A ) : X --> CC  /\  X  C_  RR )  ->  ( RR  _D  ( *  o.  (
x  e.  X  |->  A ) ) )  =  ( *  o.  ( RR  _D  ( x  e.  X  |->  A ) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ph  ->  ( RR  _D  (
*  o.  ( x  e.  X  |->  A ) ) )  =  ( *  o.  ( RR 
_D  ( x  e.  X  |->  A ) ) ) )
6 cjf 11031 . . . . 5  |-  * : CC --> CC
76a1i 9 . . . 4  |-  ( ph  ->  * : CC --> CC )
87, 1cofmpt 5734 . . 3  |-  ( ph  ->  ( *  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( * `  A ) ) )
98oveq2d 5941 . 2  |-  ( ph  ->  ( RR  _D  (
*  o.  ( x  e.  X  |->  A ) ) )  =  ( RR  _D  ( x  e.  X  |->  ( * `
 A ) ) ) )
10 reelprrecn 8033 . . . . 5  |-  RR  e.  { RR ,  CC }
1110a1i 9 . . . 4  |-  ( ph  ->  RR  e.  { RR ,  CC } )
12 dvmptcj.b . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
13 dvmptcj.da . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
1411, 1, 12, 13, 3dvmptclx 15062 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
157feqmptd 5617 . . 3  |-  ( ph  ->  *  =  ( y  e.  CC  |->  ( * `
 y ) ) )
16 fveq2 5561 . . 3  |-  ( y  =  B  ->  (
* `  y )  =  ( * `  B ) )
1714, 13, 15, 16fmptco 5731 . 2  |-  ( ph  ->  ( *  o.  ( RR  _D  ( x  e.  X  |->  A ) ) )  =  ( x  e.  X  |->  ( * `
 B ) ) )
185, 9, 173eqtr3d 2237 1  |-  ( ph  ->  ( RR  _D  (
x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   {cpr 3624    |-> cmpt 4095    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   *ccj 11023    _D cdv 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator