ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnelprrecn Unicode version

Theorem cnelprrecn 8061
Description: Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
cnelprrecn  |-  CC  e.  { RR ,  CC }

Proof of Theorem cnelprrecn
StepHypRef Expression
1 cnex 8049 . 2  |-  CC  e.  _V
21prid2 3740 1  |-  CC  e.  { RR ,  CC }
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   {cpr 3634   CCcc 7923   RRcr 7924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  dvfcnpm  15162  dvexp  15183  dvmptcmulcn  15193  dvmptnegcn  15194  dvmptsubcn  15195  dvply1  15237
  Copyright terms: Public domain W3C validator