ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnelprrecn Unicode version

Theorem cnelprrecn 8008
Description: Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
cnelprrecn  |-  CC  e.  { RR ,  CC }

Proof of Theorem cnelprrecn
StepHypRef Expression
1 cnex 7996 . 2  |-  CC  e.  _V
21prid2 3725 1  |-  CC  e.  { RR ,  CC }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {cpr 3619   CCcc 7870   RRcr 7871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-cnex 7963
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  dvfcnpm  14844  dvexp  14860  dvmptcmulcn  14868  dvmptnegcn  14869  dvmptsubcn  14870
  Copyright terms: Public domain W3C validator