ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reelprrecn GIF version

Theorem reelprrecn 7997
Description: Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
reelprrecn ℝ ∈ {ℝ, ℂ}

Proof of Theorem reelprrecn
StepHypRef Expression
1 reex 7996 . 2 ℝ ∈ V
21prid1 3724 1 ℝ ∈ {ℝ, ℂ}
Colors of variables: wff set class
Syntax hints:  wcel 2164  {cpr 3619  cc 7860  cr 7861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7953  ax-resscn 7954
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625
This theorem is referenced by:  dvfpm  14814  dvmptcjx  14842
  Copyright terms: Public domain W3C validator