![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-resscn | Unicode version |
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7922. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-resscn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cr 7873 |
. 2
![]() ![]() | |
2 | cc 7872 |
. 2
![]() ![]() | |
3 | 1, 2 | wss 3154 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: recn 8007 reex 8008 recni 8033 rerecapb 8864 nnsscn 8989 nn0sscn 9248 qsscn 9699 reexpcl 10630 rpexpcl 10632 reexpclzap 10633 expge0 10649 expge1 10650 abscn2 11461 recn2 11463 imcn2 11464 climabs 11466 climre 11468 climim 11469 climcvg1nlem 11495 fsumrecl 11547 fsumrpcl 11550 fsumge0 11605 fsumre 11618 fsumim 11619 fprodrecl 11754 fprodrpcl 11757 fprodreclf 11760 fprodge0 11783 fprodge1 11785 reeff1 11846 remet 14727 tgioo2cntop 14736 tgioo2 14738 abscncf 14764 recncf 14765 imcncf 14766 cnrehmeocntop 14789 maxcncf 14794 mincncf 14795 ivthreinc 14824 hovercncf 14825 limcimolemlt 14843 recnprss 14866 dvidrelem 14871 dvidre 14876 dvcjbr 14887 dvfre 14889 reeff1olem 14947 cosz12 14956 ioocosf1o 15030 |
Copyright terms: Public domain | W3C validator |