| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | Unicode version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8051 |
. 2
| |
| 2 | ax-resscn 8019 |
. 2
| |
| 3 | 1, 2 | ssexi 4183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: reelprrecn 8062 peano5nni 9041 xrex 9980 iccen 10130 sqrtrval 11344 absval 11345 negfi 11572 climrecvg1n 11692 odzval 12597 pczpre 12653 metuex 14350 ismet 14849 rerestcntop 15063 rerest 15065 ivthreinc 15150 dvidrelem 15197 dvcjbr 15213 dvcj 15214 dvfre 15215 plyrecj 15268 iooreen 16011 dceqnconst 16036 dcapnconst 16037 |
| Copyright terms: Public domain | W3C validator |