| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | Unicode version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8123 |
. 2
| |
| 2 | ax-resscn 8091 |
. 2
| |
| 3 | 1, 2 | ssexi 4222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: reelprrecn 8134 peano5nni 9113 xrex 10052 iccen 10202 sqrtrval 11511 absval 11512 negfi 11739 climrecvg1n 11859 odzval 12764 pczpre 12820 metuex 14519 ismet 15018 rerestcntop 15232 rerest 15234 ivthreinc 15319 dvidrelem 15366 dvcjbr 15382 dvcj 15383 dvfre 15384 plyrecj 15437 iooreen 16403 dceqnconst 16428 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |