| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reex | Unicode version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| reex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnex 8003 | 
. 2
 | |
| 2 | ax-resscn 7971 | 
. 2
 | |
| 3 | 1, 2 | ssexi 4171 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: reelprrecn 8014 peano5nni 8993 xrex 9931 iccen 10081 sqrtrval 11165 absval 11166 negfi 11393 climrecvg1n 11513 odzval 12410 pczpre 12466 metuex 14111 ismet 14580 rerestcntop 14794 rerest 14796 ivthreinc 14881 dvidrelem 14928 dvcjbr 14944 dvcj 14945 dvfre 14946 plyrecj 14999 iooreen 15679 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |