| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | Unicode version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8049 |
. 2
| |
| 2 | ax-resscn 8017 |
. 2
| |
| 3 | 1, 2 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: reelprrecn 8060 peano5nni 9039 xrex 9978 iccen 10128 sqrtrval 11311 absval 11312 negfi 11539 climrecvg1n 11659 odzval 12564 pczpre 12620 metuex 14317 ismet 14816 rerestcntop 15030 rerest 15032 ivthreinc 15117 dvidrelem 15164 dvcjbr 15180 dvcj 15181 dvfre 15182 plyrecj 15235 iooreen 15974 dceqnconst 15999 dcapnconst 16000 |
| Copyright terms: Public domain | W3C validator |