| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reex | Unicode version | ||
| Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| reex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8084 |
. 2
| |
| 2 | ax-resscn 8052 |
. 2
| |
| 3 | 1, 2 | ssexi 4198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: reelprrecn 8095 peano5nni 9074 xrex 10013 iccen 10163 sqrtrval 11426 absval 11427 negfi 11654 climrecvg1n 11774 odzval 12679 pczpre 12735 metuex 14432 ismet 14931 rerestcntop 15145 rerest 15147 ivthreinc 15232 dvidrelem 15279 dvcjbr 15295 dvcj 15296 dvfre 15297 plyrecj 15350 iooreen 16176 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |