Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reex | Unicode version |
Description: The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
reex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7858 | . 2 | |
2 | ax-resscn 7826 | . 2 | |
3 | 1, 2 | ssexi 4104 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cvv 2712 cc 7732 cr 7733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4084 ax-cnex 7825 ax-resscn 7826 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 |
This theorem is referenced by: reelprrecn 7869 peano5nni 8841 xrex 9766 iccen 9916 sqrtrval 10911 absval 10912 negfi 11138 climrecvg1n 11256 odzval 12131 pczpre 12187 ismet 12814 rerestcntop 13020 dvcjbr 13142 dvcj 13143 dvfre 13144 iooreen 13677 dceqnconst 13701 dcapnconst 13702 |
Copyright terms: Public domain | W3C validator |