Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releq | Unicode version |
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
releq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3176 | . 2 | |
2 | df-rel 4627 | . 2 | |
3 | df-rel 4627 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 cvv 2735 wss 3127 cxp 4618 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 df-rel 4627 |
This theorem is referenced by: releqi 4703 releqd 4704 dfrel2 5071 tposfn2 6257 ereq1 6532 |
Copyright terms: Public domain | W3C validator |