ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq Unicode version

Theorem releq 4702
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3176 . 2  |-  ( A  =  B  ->  ( A  C_  ( _V  X.  _V )  <->  B  C_  ( _V 
X.  _V ) ) )
2 df-rel 4627 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4627 . 2  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
41, 2, 33bitr4g 223 1  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   _Vcvv 2735    C_ wss 3127    X. cxp 4618   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140  df-rel 4627
This theorem is referenced by:  releqi  4703  releqd  4704  dfrel2  5071  tposfn2  6257  ereq1  6532
  Copyright terms: Public domain W3C validator