ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq Unicode version

Theorem releq 4745
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3206 . 2  |-  ( A  =  B  ->  ( A  C_  ( _V  X.  _V )  <->  B  C_  ( _V 
X.  _V ) ) )
2 df-rel 4670 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4670 . 2  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
41, 2, 33bitr4g 223 1  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   _Vcvv 2763    C_ wss 3157    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-rel 4670
This theorem is referenced by:  releqi  4746  releqd  4747  dfrel2  5120  tposfn2  6324  ereq1  6599
  Copyright terms: Public domain W3C validator