Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releq | Unicode version |
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
releq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3165 | . 2 | |
2 | df-rel 4611 | . 2 | |
3 | df-rel 4611 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 cvv 2726 wss 3116 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-rel 4611 |
This theorem is referenced by: releqi 4687 releqd 4688 dfrel2 5054 tposfn2 6234 ereq1 6508 |
Copyright terms: Public domain | W3C validator |