ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq Unicode version

Theorem releq 4693
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3170 . 2  |-  ( A  =  B  ->  ( A  C_  ( _V  X.  _V )  <->  B  C_  ( _V 
X.  _V ) ) )
2 df-rel 4618 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
3 df-rel 4618 . 2  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
41, 2, 33bitr4g 222 1  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   _Vcvv 2730    C_ wss 3121    X. cxp 4609   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-rel 4618
This theorem is referenced by:  releqi  4694  releqd  4695  dfrel2  5061  tposfn2  6245  ereq1  6520
  Copyright terms: Public domain W3C validator