| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releqi | Unicode version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 |
|
| Ref | Expression |
|---|---|
| releqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 |
. 2
| |
| 2 | releq 4775 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-rel 4700 |
| This theorem is referenced by: reliun 4814 reluni 4816 relint 4817 reldmmpo 6080 tfrlem6 6425 subrgdvds 14112 rrgmex 14138 lssmex 14232 2idlmex 14378 psmetrel 14909 metrel 14929 xmetrel 14930 xmetf 14937 mopnrel 15028 |
| Copyright terms: Public domain | W3C validator |