ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqi Unicode version

Theorem releqi 4747
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
Hypothesis
Ref Expression
releqi.1  |-  A  =  B
Assertion
Ref Expression
releqi  |-  ( Rel 
A  <->  Rel  B )

Proof of Theorem releqi
StepHypRef Expression
1 releqi.1 . 2  |-  A  =  B
2 releq 4746 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  <->  Rel  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-rel 4671
This theorem is referenced by:  reliun  4785  reluni  4787  relint  4788  reldmmpo  6038  tfrlem6  6383  subrgdvds  13867  rrgmex  13893  lssmex  13987  2idlmex  14133  psmetrel  14642  metrel  14662  xmetrel  14663  xmetf  14670  mopnrel  14761
  Copyright terms: Public domain W3C validator