Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releqi | Unicode version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 |
Ref | Expression |
---|---|
releqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 | |
2 | releq 4683 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1342 wrel 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-11 1493 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-in 3120 df-ss 3127 df-rel 4608 |
This theorem is referenced by: reliun 4722 reluni 4724 relint 4725 reldmmpo 5947 tfrlem6 6278 psmetrel 12920 metrel 12940 xmetrel 12941 xmetf 12948 mopnrel 13039 |
Copyright terms: Public domain | W3C validator |