ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqi Unicode version

Theorem releqi 4802
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
Hypothesis
Ref Expression
releqi.1  |-  A  =  B
Assertion
Ref Expression
releqi  |-  ( Rel 
A  <->  Rel  B )

Proof of Theorem releqi
StepHypRef Expression
1 releqi.1 . 2  |-  A  =  B
2 releq 4801 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  <->  Rel  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-rel 4726
This theorem is referenced by:  reliun  4840  reluni  4842  relint  4843  reldmmpo  6116  tfrlem6  6462  reldvdsr  14055  subrgdvds  14199  rrgmex  14225  lssmex  14319  2idlmex  14465  psmetrel  14996  metrel  15016  xmetrel  15017  xmetf  15024  mopnrel  15115
  Copyright terms: Public domain W3C validator