| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > releqi | Unicode version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) | 
| Ref | Expression | 
|---|---|
| releqi.1 | 
 | 
| Ref | Expression | 
|---|---|
| releqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | releqi.1 | 
. 2
 | |
| 2 | releq 4745 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-rel 4670 | 
| This theorem is referenced by: reliun 4784 reluni 4786 relint 4787 reldmmpo 6034 tfrlem6 6374 subrgdvds 13791 rrgmex 13817 lssmex 13911 2idlmex 14057 psmetrel 14558 metrel 14578 xmetrel 14579 xmetf 14586 mopnrel 14677 | 
| Copyright terms: Public domain | W3C validator |