![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > releqi | Unicode version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
releqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | releq 4720 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 df-rel 4645 |
This theorem is referenced by: reliun 4759 reluni 4761 relint 4762 reldmmpo 6000 tfrlem6 6331 subrgdvds 13455 lssmex 13544 2idlmex 13691 psmetrel 14118 metrel 14138 xmetrel 14139 xmetf 14146 mopnrel 14237 |
Copyright terms: Public domain | W3C validator |