ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqi Unicode version

Theorem releqi 4687
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
Hypothesis
Ref Expression
releqi.1  |-  A  =  B
Assertion
Ref Expression
releqi  |-  ( Rel 
A  <->  Rel  B )

Proof of Theorem releqi
StepHypRef Expression
1 releqi.1 . 2  |-  A  =  B
2 releq 4686 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  <->  Rel  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-rel 4611
This theorem is referenced by:  reliun  4725  reluni  4727  relint  4728  reldmmpo  5953  tfrlem6  6284  psmetrel  12962  metrel  12982  xmetrel  12983  xmetf  12990  mopnrel  13081
  Copyright terms: Public domain W3C validator