ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfn2 Unicode version

Theorem tposfn2 6234
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfn2  |-  ( Rel 
A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )

Proof of Theorem tposfn2
StepHypRef Expression
1 tposfun 6228 . . . 4  |-  ( Fun 
F  ->  Fun tpos  F )
21a1i 9 . . 3  |-  ( Rel 
A  ->  ( Fun  F  ->  Fun tpos  F )
)
3 dmtpos 6224 . . . . . 6  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
43a1i 9 . . . . 5  |-  ( dom 
F  =  A  -> 
( Rel  dom  F  ->  dom tpos  F  =  `' dom  F ) )
5 releq 4686 . . . . 5  |-  ( dom 
F  =  A  -> 
( Rel  dom  F  <->  Rel  A ) )
6 cnveq 4778 . . . . . 6  |-  ( dom 
F  =  A  ->  `' dom  F  =  `' A )
76eqeq2d 2177 . . . . 5  |-  ( dom 
F  =  A  -> 
( dom tpos  F  =  `' dom  F  <->  dom tpos  F  =  `' A ) )
84, 5, 73imtr3d 201 . . . 4  |-  ( dom 
F  =  A  -> 
( Rel  A  ->  dom tpos  F  =  `' A
) )
98com12 30 . . 3  |-  ( Rel 
A  ->  ( dom  F  =  A  ->  dom tpos  F  =  `' A ) )
102, 9anim12d 333 . 2  |-  ( Rel 
A  ->  ( ( Fun  F  /\  dom  F  =  A )  ->  ( Fun tpos  F  /\  dom tpos  F  =  `' A ) ) )
11 df-fn 5191 . 2  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
12 df-fn 5191 . 2  |-  (tpos  F  Fn  `' A  <->  ( Fun tpos  F  /\  dom tpos  F  =  `' A
) )
1310, 11, 123imtr4g 204 1  |-  ( Rel 
A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   `'ccnv 4603   dom cdm 4604   Rel wrel 4609   Fun wfun 5182    Fn wfn 5183  tpos ctpos 6212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-tpos 6213
This theorem is referenced by:  tposfo2  6235  tpos0  6242
  Copyright terms: Public domain W3C validator