ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq GIF version

Theorem releq 4741
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3202 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 4666 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4666 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 223 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  Vcvv 2760  wss 3153   × cxp 4657  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-rel 4666
This theorem is referenced by:  releqi  4742  releqd  4743  dfrel2  5116  tposfn2  6319  ereq1  6594
  Copyright terms: Public domain W3C validator