ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq GIF version

Theorem releq 4800
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3247 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 4725 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4725 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 223 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  Vcvv 2799  wss 3197   × cxp 4716  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-rel 4725
This theorem is referenced by:  releqi  4801  releqd  4802  dfrel2  5178  tposfn2  6410  ereq1  6685
  Copyright terms: Public domain W3C validator