| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releq | GIF version | ||
| Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3247 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
| 2 | df-rel 4725 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 4725 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 Vcvv 2799 ⊆ wss 3197 × cxp 4716 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-rel 4725 |
| This theorem is referenced by: releqi 4801 releqd 4802 dfrel2 5178 tposfn2 6410 ereq1 6685 |
| Copyright terms: Public domain | W3C validator |