| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releq | GIF version | ||
| Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3220 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
| 2 | df-rel 4690 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 4690 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 Vcvv 2773 ⊆ wss 3170 × cxp 4681 Rel wrel 4688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-rel 4690 |
| This theorem is referenced by: releqi 4766 releqd 4767 dfrel2 5142 tposfn2 6365 ereq1 6640 |
| Copyright terms: Public domain | W3C validator |