| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | Unicode version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5060 |
. . 3
| |
| 2 | vex 2775 |
. . . . . 6
| |
| 3 | vex 2775 |
. . . . . 6
| |
| 4 | 2, 3 | opelcnv 4860 |
. . . . 5
|
| 5 | 3, 2 | opelcnv 4860 |
. . . . 5
|
| 6 | 4, 5 | bitri 184 |
. . . 4
|
| 7 | 6 | eqrelriv 4768 |
. . 3
|
| 8 | 1, 7 | mpan 424 |
. 2
|
| 9 | releq 4757 |
. . 3
| |
| 10 | 1, 9 | mpbii 148 |
. 2
|
| 11 | 8, 10 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 |
| This theorem is referenced by: dfrel4v 5134 cnvcnv 5135 cnveqb 5138 dfrel3 5140 cnvcnvres 5146 cnvsn 5165 cores2 5195 co01 5197 coi2 5199 relcnvtr 5202 relcnvexb 5222 funcnvres2 5349 f1cnvcnv 5492 f1ocnv 5535 f1ocnvb 5536 f1ococnv1 5551 isores1 5883 cnvf1o 6311 tposf12 6355 ssenen 6948 relcnvfi 7043 caseinl 7193 caseinr 7194 fsumcnv 11748 fprodcnv 11936 structcnvcnv 12848 hmeocnv 14779 hmeocnvb 14790 |
| Copyright terms: Public domain | W3C validator |