![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrel2 | Unicode version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5043 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | vex 2763 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | vex 2763 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 2, 3 | opelcnv 4844 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3, 2 | opelcnv 4844 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | bitri 184 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | eqrelriv 4752 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | mpan 424 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | releq 4741 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 1, 9 | mpbii 148 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: dfrel4v 5117 cnvcnv 5118 cnveqb 5121 dfrel3 5123 cnvcnvres 5129 cnvsn 5148 cores2 5178 co01 5180 coi2 5182 relcnvtr 5185 relcnvexb 5205 funcnvres2 5329 f1cnvcnv 5470 f1ocnv 5513 f1ocnvb 5514 f1ococnv1 5529 isores1 5857 cnvf1o 6278 tposf12 6322 ssenen 6907 relcnvfi 7000 caseinl 7150 caseinr 7151 fsumcnv 11580 fprodcnv 11768 structcnvcnv 12634 hmeocnv 14475 hmeocnvb 14486 |
Copyright terms: Public domain | W3C validator |