ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 Unicode version

Theorem dfrel2 5133
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2  |-  ( Rel 
R  <->  `' `' R  =  R
)

Proof of Theorem dfrel2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5060 . . 3  |-  Rel  `' `' R
2 vex 2775 . . . . . 6  |-  x  e. 
_V
3 vex 2775 . . . . . 6  |-  y  e. 
_V
42, 3opelcnv 4860 . . . . 5  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. y ,  x >.  e.  `' R )
53, 2opelcnv 4860 . . . . 5  |-  ( <.
y ,  x >.  e.  `' R  <->  <. x ,  y
>.  e.  R )
64, 5bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. x ,  y
>.  e.  R )
76eqrelriv 4768 . . 3  |-  ( ( Rel  `' `' R  /\  Rel  R )  ->  `' `' R  =  R
)
81, 7mpan 424 . 2  |-  ( Rel 
R  ->  `' `' R  =  R )
9 releq 4757 . . 3  |-  ( `' `' R  =  R  ->  ( Rel  `' `' R 
<->  Rel  R ) )
101, 9mpbii 148 . 2  |-  ( `' `' R  =  R  ->  Rel  R )
118, 10impbii 126 1  |-  ( Rel 
R  <->  `' `' R  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636   `'ccnv 4674   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683
This theorem is referenced by:  dfrel4v  5134  cnvcnv  5135  cnveqb  5138  dfrel3  5140  cnvcnvres  5146  cnvsn  5165  cores2  5195  co01  5197  coi2  5199  relcnvtr  5202  relcnvexb  5222  funcnvres2  5349  f1cnvcnv  5492  f1ocnv  5535  f1ocnvb  5536  f1ococnv1  5551  isores1  5883  cnvf1o  6311  tposf12  6355  ssenen  6948  relcnvfi  7043  caseinl  7193  caseinr  7194  fsumcnv  11748  fprodcnv  11936  structcnvcnv  12848  hmeocnv  14779  hmeocnvb  14790
  Copyright terms: Public domain W3C validator