| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | Unicode version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 |
. . 3
| |
| 2 | vex 2802 |
. . . . . 6
| |
| 3 | vex 2802 |
. . . . . 6
| |
| 4 | 2, 3 | opelcnv 4904 |
. . . . 5
|
| 5 | 3, 2 | opelcnv 4904 |
. . . . 5
|
| 6 | 4, 5 | bitri 184 |
. . . 4
|
| 7 | 6 | eqrelriv 4812 |
. . 3
|
| 8 | 1, 7 | mpan 424 |
. 2
|
| 9 | releq 4801 |
. . 3
| |
| 10 | 1, 9 | mpbii 148 |
. 2
|
| 11 | 8, 10 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: dfrel4v 5180 cnvcnv 5181 cnveqb 5184 dfrel3 5186 cnvcnvres 5192 cnvsn 5211 cores2 5241 co01 5243 coi2 5245 relcnvtr 5248 relcnvexb 5268 funcnvres2 5396 f1cnvcnv 5542 f1ocnv 5585 f1ocnvb 5586 f1ococnv1 5601 isores1 5938 cnvf1o 6371 tposf12 6415 ssenen 7012 relcnvfi 7108 caseinl 7258 caseinr 7259 fsumcnv 11948 fprodcnv 12136 structcnvcnv 13048 hmeocnv 14981 hmeocnvb 14992 |
| Copyright terms: Public domain | W3C validator |