ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 Unicode version

Theorem dfrel2 5121
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2  |-  ( Rel 
R  <->  `' `' R  =  R
)

Proof of Theorem dfrel2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5048 . . 3  |-  Rel  `' `' R
2 vex 2766 . . . . . 6  |-  x  e. 
_V
3 vex 2766 . . . . . 6  |-  y  e. 
_V
42, 3opelcnv 4849 . . . . 5  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. y ,  x >.  e.  `' R )
53, 2opelcnv 4849 . . . . 5  |-  ( <.
y ,  x >.  e.  `' R  <->  <. x ,  y
>.  e.  R )
64, 5bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. x ,  y
>.  e.  R )
76eqrelriv 4757 . . 3  |-  ( ( Rel  `' `' R  /\  Rel  R )  ->  `' `' R  =  R
)
81, 7mpan 424 . 2  |-  ( Rel 
R  ->  `' `' R  =  R )
9 releq 4746 . . 3  |-  ( `' `' R  =  R  ->  ( Rel  `' `' R 
<->  Rel  R ) )
101, 9mpbii 148 . 2  |-  ( `' `' R  =  R  ->  Rel  R )
118, 10impbii 126 1  |-  ( Rel 
R  <->  `' `' R  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3626   `'ccnv 4663   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672
This theorem is referenced by:  dfrel4v  5122  cnvcnv  5123  cnveqb  5126  dfrel3  5128  cnvcnvres  5134  cnvsn  5153  cores2  5183  co01  5185  coi2  5187  relcnvtr  5190  relcnvexb  5210  funcnvres2  5334  f1cnvcnv  5477  f1ocnv  5520  f1ocnvb  5521  f1ococnv1  5536  isores1  5864  cnvf1o  6292  tposf12  6336  ssenen  6921  relcnvfi  7016  caseinl  7166  caseinr  7167  fsumcnv  11619  fprodcnv  11807  structcnvcnv  12719  hmeocnv  14627  hmeocnvb  14638
  Copyright terms: Public domain W3C validator