| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | Unicode version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5079 |
. . 3
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | vex 2779 |
. . . . . 6
| |
| 4 | 2, 3 | opelcnv 4878 |
. . . . 5
|
| 5 | 3, 2 | opelcnv 4878 |
. . . . 5
|
| 6 | 4, 5 | bitri 184 |
. . . 4
|
| 7 | 6 | eqrelriv 4786 |
. . 3
|
| 8 | 1, 7 | mpan 424 |
. 2
|
| 9 | releq 4775 |
. . 3
| |
| 10 | 1, 9 | mpbii 148 |
. 2
|
| 11 | 8, 10 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 |
| This theorem is referenced by: dfrel4v 5153 cnvcnv 5154 cnveqb 5157 dfrel3 5159 cnvcnvres 5165 cnvsn 5184 cores2 5214 co01 5216 coi2 5218 relcnvtr 5221 relcnvexb 5241 funcnvres2 5368 f1cnvcnv 5514 f1ocnv 5557 f1ocnvb 5558 f1ococnv1 5573 isores1 5906 cnvf1o 6334 tposf12 6378 ssenen 6973 relcnvfi 7069 caseinl 7219 caseinr 7220 fsumcnv 11863 fprodcnv 12051 structcnvcnv 12963 hmeocnv 14894 hmeocnvb 14905 |
| Copyright terms: Public domain | W3C validator |