ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 Unicode version

Theorem dfrel2 5179
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2  |-  ( Rel 
R  <->  `' `' R  =  R
)

Proof of Theorem dfrel2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5106 . . 3  |-  Rel  `' `' R
2 vex 2802 . . . . . 6  |-  x  e. 
_V
3 vex 2802 . . . . . 6  |-  y  e. 
_V
42, 3opelcnv 4904 . . . . 5  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. y ,  x >.  e.  `' R )
53, 2opelcnv 4904 . . . . 5  |-  ( <.
y ,  x >.  e.  `' R  <->  <. x ,  y
>.  e.  R )
64, 5bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. x ,  y
>.  e.  R )
76eqrelriv 4812 . . 3  |-  ( ( Rel  `' `' R  /\  Rel  R )  ->  `' `' R  =  R
)
81, 7mpan 424 . 2  |-  ( Rel 
R  ->  `' `' R  =  R )
9 releq 4801 . . 3  |-  ( `' `' R  =  R  ->  ( Rel  `' `' R 
<->  Rel  R ) )
101, 9mpbii 148 . 2  |-  ( `' `' R  =  R  ->  Rel  R )
118, 10impbii 126 1  |-  ( Rel 
R  <->  `' `' R  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   <.cop 3669   `'ccnv 4718   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727
This theorem is referenced by:  dfrel4v  5180  cnvcnv  5181  cnveqb  5184  dfrel3  5186  cnvcnvres  5192  cnvsn  5211  cores2  5241  co01  5243  coi2  5245  relcnvtr  5248  relcnvexb  5268  funcnvres2  5396  f1cnvcnv  5542  f1ocnv  5585  f1ocnvb  5586  f1ococnv1  5601  isores1  5938  cnvf1o  6371  tposf12  6415  ssenen  7012  relcnvfi  7108  caseinl  7258  caseinr  7259  fsumcnv  11948  fprodcnv  12136  structcnvcnv  13048  hmeocnv  14981  hmeocnvb  14992
  Copyright terms: Public domain W3C validator