ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 Unicode version

Theorem dfrel2 5152
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2  |-  ( Rel 
R  <->  `' `' R  =  R
)

Proof of Theorem dfrel2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5079 . . 3  |-  Rel  `' `' R
2 vex 2779 . . . . . 6  |-  x  e. 
_V
3 vex 2779 . . . . . 6  |-  y  e. 
_V
42, 3opelcnv 4878 . . . . 5  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. y ,  x >.  e.  `' R )
53, 2opelcnv 4878 . . . . 5  |-  ( <.
y ,  x >.  e.  `' R  <->  <. x ,  y
>.  e.  R )
64, 5bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  `' `' R  <->  <. x ,  y
>.  e.  R )
76eqrelriv 4786 . . 3  |-  ( ( Rel  `' `' R  /\  Rel  R )  ->  `' `' R  =  R
)
81, 7mpan 424 . 2  |-  ( Rel 
R  ->  `' `' R  =  R )
9 releq 4775 . . 3  |-  ( `' `' R  =  R  ->  ( Rel  `' `' R 
<->  Rel  R ) )
101, 9mpbii 148 . 2  |-  ( `' `' R  =  R  ->  Rel  R )
118, 10impbii 126 1  |-  ( Rel 
R  <->  `' `' R  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646   `'ccnv 4692   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  dfrel4v  5153  cnvcnv  5154  cnveqb  5157  dfrel3  5159  cnvcnvres  5165  cnvsn  5184  cores2  5214  co01  5216  coi2  5218  relcnvtr  5221  relcnvexb  5241  funcnvres2  5368  f1cnvcnv  5514  f1ocnv  5557  f1ocnvb  5558  f1ococnv1  5573  isores1  5906  cnvf1o  6334  tposf12  6378  ssenen  6973  relcnvfi  7069  caseinl  7219  caseinr  7220  fsumcnv  11863  fprodcnv  12051  structcnvcnv  12963  hmeocnv  14894  hmeocnvb  14905
  Copyright terms: Public domain W3C validator