Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reluni | Unicode version |
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
reluni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 3898 | . . 3 | |
2 | 1 | releqi 4662 | . 2 |
3 | reliun 4700 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wral 2432 cuni 3768 ciun 3845 wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-in 3104 df-ss 3111 df-uni 3769 df-iun 3847 df-rel 4586 |
This theorem is referenced by: fununi 5231 tfrlem6 6253 |
Copyright terms: Public domain | W3C validator |