ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reluni Unicode version

Theorem reluni 4798
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni  |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
Distinct variable group:    x, A

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 3981 . . 3  |-  U. A  =  U_ x  e.  A  x
21releqi 4758 . 2  |-  ( Rel  U. A  <->  Rel  U_ x  e.  A  x )
3 reliun 4796 . 2  |-  ( Rel  U_ x  e.  A  x 
<-> 
A. x  e.  A  Rel  x )
42, 3bitri 184 1  |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2484   U.cuni 3850   U_ciun 3927   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-iun 3929  df-rel 4682
This theorem is referenced by:  fununi  5342  tfrlem6  6402
  Copyright terms: Public domain W3C validator