| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reluni | Unicode version | ||
| Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| reluni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 3962 |
. . 3
| |
| 2 | 1 | releqi 4734 |
. 2
|
| 3 | reliun 4772 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2758 df-in 3154 df-ss 3161 df-uni 3832 df-iun 3910 df-rel 4658 |
| This theorem is referenced by: fununi 5310 tfrlem6 6349 |
| Copyright terms: Public domain | W3C validator |