ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint GIF version

Theorem relint 4787
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem relint
StepHypRef Expression
1 reliin 4785 . 2 (∃𝑥𝐴 Rel 𝑥 → Rel 𝑥𝐴 𝑥)
2 intiin 3971 . . 3 𝐴 = 𝑥𝐴 𝑥
32releqi 4746 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
41, 3sylibr 134 1 (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2476   cint 3874   ciin 3917  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-int 3875  df-iin 3919  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator