ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relint GIF version

Theorem relint 4820
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem relint
StepHypRef Expression
1 reliin 4818 . 2 (∃𝑥𝐴 Rel 𝑥 → Rel 𝑥𝐴 𝑥)
2 intiin 3999 . . 3 𝐴 = 𝑥𝐴 𝑥
32releqi 4779 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
41, 3sylibr 134 1 (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2489   cint 3902   ciin 3945  Rel wrel 4701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-int 3903  df-iin 3947  df-rel 4703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator