Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relint | GIF version |
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
relint | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reliin 4725 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 3919 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | releqi 4686 | . 2 ⊢ (Rel ∩ 𝐴 ↔ Rel ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | sylibr 133 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wrex 2444 ∩ cint 3823 ∩ ciin 3866 Rel wrel 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 df-iin 3868 df-rel 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |