| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relint | GIF version | ||
| Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| relint | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reliin 4785 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | intiin 3971 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 2 | releqi 4746 | . 2 ⊢ (Rel ∩ 𝐴 ↔ Rel ∩ 𝑥 ∈ 𝐴 𝑥) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wrex 2476 ∩ cint 3874 ∩ ciin 3917 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-iin 3919 df-rel 4670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |