ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliin Unicode version

Theorem reliin 4785
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )

Proof of Theorem reliin
StepHypRef Expression
1 iinss 3968 . 2  |-  ( E. x  e.  A  B  C_  ( _V  X.  _V )  ->  |^|_ x  e.  A  B  C_  ( _V  X.  _V ) )
2 df-rel 4670 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
32rexbii 2504 . 2  |-  ( E. x  e.  A  Rel  B  <->  E. x  e.  A  B  C_  ( _V  X.  _V ) )
4 df-rel 4670 . 2  |-  ( Rel  |^|_ x  e.  A  B  <->  |^|_
x  e.  A  B  C_  ( _V  X.  _V ) )
51, 3, 43imtr4i 201 1  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2476   _Vcvv 2763    C_ wss 3157   |^|_ciin 3917    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iin 3919  df-rel 4670
This theorem is referenced by:  relint  4787  xpiindim  4803
  Copyright terms: Public domain W3C validator