ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliin Unicode version

Theorem reliin 4815
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )

Proof of Theorem reliin
StepHypRef Expression
1 iinss 3993 . 2  |-  ( E. x  e.  A  B  C_  ( _V  X.  _V )  ->  |^|_ x  e.  A  B  C_  ( _V  X.  _V ) )
2 df-rel 4700 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
32rexbii 2515 . 2  |-  ( E. x  e.  A  Rel  B  <->  E. x  e.  A  B  C_  ( _V  X.  _V ) )
4 df-rel 4700 . 2  |-  ( Rel  |^|_ x  e.  A  B  <->  |^|_
x  e.  A  B  C_  ( _V  X.  _V ) )
51, 3, 43imtr4i 201 1  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2487   _Vcvv 2776    C_ wss 3174   |^|_ciin 3942    X. cxp 4691   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iin 3944  df-rel 4700
This theorem is referenced by:  relint  4817  xpiindim  4833
  Copyright terms: Public domain W3C validator