ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliin Unicode version

Theorem reliin 4733
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )

Proof of Theorem reliin
StepHypRef Expression
1 iinss 3924 . 2  |-  ( E. x  e.  A  B  C_  ( _V  X.  _V )  ->  |^|_ x  e.  A  B  C_  ( _V  X.  _V ) )
2 df-rel 4618 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
32rexbii 2477 . 2  |-  ( E. x  e.  A  Rel  B  <->  E. x  e.  A  B  C_  ( _V  X.  _V ) )
4 df-rel 4618 . 2  |-  ( Rel  |^|_ x  e.  A  B  <->  |^|_
x  e.  A  B  C_  ( _V  X.  _V ) )
51, 3, 43imtr4i 200 1  |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2449   _Vcvv 2730    C_ wss 3121   |^|_ciin 3874    X. cxp 4609   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-iin 3876  df-rel 4618
This theorem is referenced by:  relint  4735  xpiindim  4748
  Copyright terms: Public domain W3C validator