ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Unicode version

Theorem rel0 4784
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0  |-  Rel  (/)

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3485 . 2  |-  (/)  C_  ( _V  X.  _V )
2 df-rel 4666 . 2  |-  ( Rel  (/) 
<->  (/)  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    C_ wss 3153   (/)c0 3446    X. cxp 4657   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-rel 4666
This theorem is referenced by:  reldm0  4880  cnv0  5069  cnveq0  5122  co02  5179  co01  5180  tpos0  6327  0er  6621
  Copyright terms: Public domain W3C validator