ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Unicode version

Theorem rel0 4800
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0  |-  Rel  (/)

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3499 . 2  |-  (/)  C_  ( _V  X.  _V )
2 df-rel 4682 . 2  |-  ( Rel  (/) 
<->  (/)  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2772    C_ wss 3166   (/)c0 3460    X. cxp 4673   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-rel 4682
This theorem is referenced by:  reldm0  4896  cnv0  5086  cnveq0  5139  co02  5196  co01  5197  tpos0  6360  0er  6654
  Copyright terms: Public domain W3C validator