ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Unicode version

Theorem rel0 4789
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0  |-  Rel  (/)

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3490 . 2  |-  (/)  C_  ( _V  X.  _V )
2 df-rel 4671 . 2  |-  ( Rel  (/) 
<->  (/)  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    C_ wss 3157   (/)c0 3451    X. cxp 4662   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452  df-rel 4671
This theorem is referenced by:  reldm0  4885  cnv0  5074  cnveq0  5127  co02  5184  co01  5185  tpos0  6341  0er  6635
  Copyright terms: Public domain W3C validator