ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Unicode version

Theorem rel0 4592
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0  |-  Rel  (/)

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3340 . 2  |-  (/)  C_  ( _V  X.  _V )
2 df-rel 4474 . 2  |-  ( Rel  (/) 
<->  (/)  C_  ( _V  X.  _V ) )
31, 2mpbir 145 1  |-  Rel  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2633    C_ wss 3013   (/)c0 3302    X. cxp 4465   Rel wrel 4472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-in 3019  df-ss 3026  df-nul 3303  df-rel 4474
This theorem is referenced by:  reldm0  4685  cnv0  4868  cnveq0  4921  co02  4978  co01  4979  tpos0  6077  0er  6366
  Copyright terms: Public domain W3C validator