ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Unicode version

Theorem rel0 4844
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0  |-  Rel  (/)

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3530 . 2  |-  (/)  C_  ( _V  X.  _V )
2 df-rel 4726 . 2  |-  ( Rel  (/) 
<->  (/)  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    C_ wss 3197   (/)c0 3491    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-rel 4726
This theorem is referenced by:  reldm0  4941  cnv0  5132  cnveq0  5185  co02  5242  co01  5243  tpos0  6420  0er  6714
  Copyright terms: Public domain W3C validator