| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > repizf2lem | Unicode version | ||
| Description: Lemma for repizf2 4195.  If we have a function-like proposition
which
     provides at most one value of  | 
| Ref | Expression | 
|---|---|
| repizf2lem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-mo 2049 | 
. . . 4
 | |
| 2 | 1 | imbi2i 226 | 
. . 3
 | 
| 3 | 2 | albii 1484 | 
. 2
 | 
| 4 | df-ral 2480 | 
. 2
 | |
| 5 | df-ral 2480 | 
. . 3
 | |
| 6 | rabid 2673 | 
. . . . . 6
 | |
| 7 | 6 | imbi1i 238 | 
. . . . 5
 | 
| 8 | impexp 263 | 
. . . . 5
 | |
| 9 | 7, 8 | bitri 184 | 
. . . 4
 | 
| 10 | 9 | albii 1484 | 
. . 3
 | 
| 11 | 5, 10 | bitri 184 | 
. 2
 | 
| 12 | 3, 4, 11 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rab 2484 | 
| This theorem is referenced by: repizf2 4195 | 
| Copyright terms: Public domain | W3C validator |