ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2lem Unicode version

Theorem repizf2lem 3988
Description: Lemma for repizf2 3989. If we have a function-like proposition which provides at most one value of  y for each  x in a set  w, we can change "at most one" to "exactly one" by restricting the values of  x to those values for which the proposition provides a value of  y. (Contributed by Jim Kingdon, 7-Sep-2018.)
Assertion
Ref Expression
repizf2lem  |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph )

Proof of Theorem repizf2lem
StepHypRef Expression
1 df-mo 1952 . . . 4  |-  ( E* y ph  <->  ( E. y ph  ->  E! y ph ) )
21imbi2i 224 . . 3  |-  ( ( x  e.  w  ->  E* y ph )  <->  ( x  e.  w  ->  ( E. y ph  ->  E! y ph ) ) )
32albii 1404 . 2  |-  ( A. x ( x  e.  w  ->  E* y ph )  <->  A. x ( x  e.  w  ->  ( E. y ph  ->  E! y ph ) ) )
4 df-ral 2364 . 2  |-  ( A. x  e.  w  E* y ph  <->  A. x ( x  e.  w  ->  E* y ph ) )
5 df-ral 2364 . . 3  |-  ( A. x  e.  { x  e.  w  |  E. y ph } E! y
ph 
<-> 
A. x ( x  e.  { x  e.  w  |  E. y ph }  ->  E! y ph ) )
6 rabid 2542 . . . . . 6  |-  ( x  e.  { x  e.  w  |  E. y ph }  <->  ( x  e.  w  /\  E. y ph ) )
76imbi1i 236 . . . . 5  |-  ( ( x  e.  { x  e.  w  |  E. y ph }  ->  E! y ph )  <->  ( (
x  e.  w  /\  E. y ph )  ->  E! y ph ) )
8 impexp 259 . . . . 5  |-  ( ( ( x  e.  w  /\  E. y ph )  ->  E! y ph )  <->  ( x  e.  w  -> 
( E. y ph  ->  E! y ph )
) )
97, 8bitri 182 . . . 4  |-  ( ( x  e.  { x  e.  w  |  E. y ph }  ->  E! y ph )  <->  ( x  e.  w  ->  ( E. y ph  ->  E! y ph ) ) )
109albii 1404 . . 3  |-  ( A. x ( x  e. 
{ x  e.  w  |  E. y ph }  ->  E! y ph )  <->  A. x ( x  e.  w  ->  ( E. y ph  ->  E! y ph ) ) )
115, 10bitri 182 . 2  |-  ( A. x  e.  { x  e.  w  |  E. y ph } E! y
ph 
<-> 
A. x ( x  e.  w  ->  ( E. y ph  ->  E! y ph ) ) )
123, 4, 113bitr4i 210 1  |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287   E.wex 1426    e. wcel 1438   E!weu 1948   E*wmo 1949   A.wral 2359   {crab 2363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-sb 1693  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-ral 2364  df-rab 2368
This theorem is referenced by:  repizf2  3989
  Copyright terms: Public domain W3C validator