| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > repizf2lem | GIF version | ||
| Description: Lemma for repizf2 4195. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| repizf2lem | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-mo 2049 | . . . 4 ⊢ (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑)) | |
| 2 | 1 | imbi2i 226 | . . 3 ⊢ ((𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | 
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | 
| 4 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑)) | |
| 5 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑)) | |
| 6 | rabid 2673 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ↔ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)) | |
| 7 | 6 | imbi1i 238 | . . . . 5 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑)) | 
| 8 | impexp 263 | . . . . 5 ⊢ (((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | |
| 9 | 7, 8 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | 
| 10 | 9 | albii 1484 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | 
| 11 | 5, 10 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | 
| 12 | 3, 4, 11 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 ∈ wcel 2167 ∀wral 2475 {crab 2479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rab 2484 | 
| This theorem is referenced by: repizf2 4195 | 
| Copyright terms: Public domain | W3C validator |