Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resiun1 | GIF version |
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
resiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 3929 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | df-res 4616 | . . . . 5 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
3 | incom 3314 | . . . . 5 ⊢ (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵) | |
4 | 2, 3 | eqtri 2186 | . . . 4 ⊢ (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵) |
5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵)) |
6 | 5 | iuneq2i 3884 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) |
7 | df-res 4616 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
8 | incom 3314 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | 7, 8 | eqtri 2186 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) |
10 | 1, 6, 9 | 3eqtr4ri 2197 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∩ cin 3115 ∪ ciun 3866 × cxp 4602 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 df-res 4616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |