![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resiun1 | GIF version |
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
resiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 3976 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | df-res 4671 | . . . . 5 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
3 | incom 3351 | . . . . 5 ⊢ (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵) | |
4 | 2, 3 | eqtri 2214 | . . . 4 ⊢ (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵) |
5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵)) |
6 | 5 | iuneq2i 3930 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) |
7 | df-res 4671 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
8 | incom 3351 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | 7, 8 | eqtri 2214 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) |
10 | 1, 6, 9 | 3eqtr4ri 2225 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ∪ ciun 3912 × cxp 4657 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-iun 3914 df-res 4671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |