ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun1 GIF version

Theorem resiun1 4979
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin2 3991 . 2 𝑥𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
2 df-res 4688 . . . . 5 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
3 incom 3365 . . . . 5 (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵)
42, 3eqtri 2226 . . . 4 (𝐵𝐶) = ((𝐶 × V) ∩ 𝐵)
54a1i 9 . . 3 (𝑥𝐴 → (𝐵𝐶) = ((𝐶 × V) ∩ 𝐵))
65iuneq2i 3945 . 2 𝑥𝐴 (𝐵𝐶) = 𝑥𝐴 ((𝐶 × V) ∩ 𝐵)
7 df-res 4688 . . 3 ( 𝑥𝐴 𝐵𝐶) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
8 incom 3365 . . 3 ( 𝑥𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
97, 8eqtri 2226 . 2 ( 𝑥𝐴 𝐵𝐶) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
101, 6, 93eqtr4ri 2237 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165   ciun 3927   × cxp 4674  cres 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-iun 3929  df-res 4688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator