ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun1 GIF version

Theorem resiun1 4796
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin2 3842 . 2 𝑥𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
2 df-res 4511 . . . . 5 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
3 incom 3234 . . . . 5 (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵)
42, 3eqtri 2135 . . . 4 (𝐵𝐶) = ((𝐶 × V) ∩ 𝐵)
54a1i 9 . . 3 (𝑥𝐴 → (𝐵𝐶) = ((𝐶 × V) ∩ 𝐵))
65iuneq2i 3797 . 2 𝑥𝐴 (𝐵𝐶) = 𝑥𝐴 ((𝐶 × V) ∩ 𝐵)
7 df-res 4511 . . 3 ( 𝑥𝐴 𝐵𝐶) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
8 incom 3234 . . 3 ( 𝑥𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
97, 8eqtri 2135 . 2 ( 𝑥𝐴 𝐵𝐶) = ((𝐶 × V) ∩ 𝑥𝐴 𝐵)
101, 6, 93eqtr4ri 2146 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1314  wcel 1463  Vcvv 2657  cin 3036   ciun 3779   × cxp 4497  cres 4501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-in 3043  df-ss 3050  df-iun 3781  df-res 4511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator