| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resiun1 | GIF version | ||
| Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) | 
| Ref | Expression | 
|---|---|
| resiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iunin2 3980 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | df-res 4675 | . . . . 5 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 3 | incom 3355 | . . . . 5 ⊢ (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵) | |
| 4 | 2, 3 | eqtri 2217 | . . . 4 ⊢ (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵) | 
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵)) | 
| 6 | 5 | iuneq2i 3934 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) | 
| 7 | df-res 4675 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
| 8 | incom 3355 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 9 | 7, 8 | eqtri 2217 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | 
| 10 | 1, 6, 9 | 3eqtr4ri 2228 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ∪ ciun 3916 × cxp 4661 ↾ cres 4665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-iun 3918 df-res 4675 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |