ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun2 Unicode version

Theorem resiun2 5025
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2  |-  ( C  |`  U_ x  e.  A  B )  =  U_ x  e.  A  ( C  |`  B )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 4731 . 2  |-  ( C  |`  U_ x  e.  A  B )  =  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )
2 df-res 4731 . . . . 5  |-  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) )
32a1i 9 . . . 4  |-  ( x  e.  A  ->  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) ) )
43iuneq2i 3983 . . 3  |-  U_ x  e.  A  ( C  |`  B )  =  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )
5 xpiundir 4778 . . . . 5  |-  ( U_ x  e.  A  B  X.  _V )  =  U_ x  e.  A  ( B  X.  _V )
65ineq2i 3402 . . . 4  |-  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )  =  ( C  i^i  U_ x  e.  A  ( B  X.  _V ) )
7 iunin2 4029 . . . 4  |-  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )  =  ( C  i^i  U_ x  e.  A  ( B  X.  _V ) )
86, 7eqtr4i 2253 . . 3  |-  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )  =  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )
94, 8eqtr4i 2253 . 2  |-  U_ x  e.  A  ( C  |`  B )  =  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )
101, 9eqtr4i 2253 1  |-  ( C  |`  U_ x  e.  A  B )  =  U_ x  e.  A  ( C  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   U_ciun 3965    X. cxp 4717    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3967  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator