ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun2 Unicode version

Theorem resiun2 4775
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2  |-  ( C  |`  U_ x  e.  A  B )  =  U_ x  e.  A  ( C  |`  B )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 4489 . 2  |-  ( C  |`  U_ x  e.  A  B )  =  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )
2 df-res 4489 . . . . 5  |-  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) )
32a1i 9 . . . 4  |-  ( x  e.  A  ->  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) ) )
43iuneq2i 3778 . . 3  |-  U_ x  e.  A  ( C  |`  B )  =  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )
5 xpiundir 4536 . . . . 5  |-  ( U_ x  e.  A  B  X.  _V )  =  U_ x  e.  A  ( B  X.  _V )
65ineq2i 3221 . . . 4  |-  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )  =  ( C  i^i  U_ x  e.  A  ( B  X.  _V ) )
7 iunin2 3823 . . . 4  |-  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )  =  ( C  i^i  U_ x  e.  A  ( B  X.  _V ) )
86, 7eqtr4i 2123 . . 3  |-  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )  =  U_ x  e.  A  ( C  i^i  ( B  X.  _V ) )
94, 8eqtr4i 2123 . 2  |-  U_ x  e.  A  ( C  |`  B )  =  ( C  i^i  ( U_ x  e.  A  B  X.  _V ) )
101, 9eqtr4i 2123 1  |-  ( C  |`  U_ x  e.  A  B )  =  U_ x  e.  A  ( C  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448   _Vcvv 2641    i^i cin 3020   U_ciun 3760    X. cxp 4475    |` cres 4479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-iun 3762  df-opab 3930  df-xp 4483  df-res 4489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator