ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalg2 Unicode version

Theorem divalg2 12352
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
Distinct variable groups:    D, r    N, r

Proof of Theorem divalg2
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 nnz 9426 . . . 4  |-  ( D  e.  NN  ->  D  e.  ZZ )
2 nnne0 9099 . . . 4  |-  ( D  e.  NN  ->  D  =/=  0 )
31, 2jca 306 . . 3  |-  ( D  e.  NN  ->  ( D  e.  ZZ  /\  D  =/=  0 ) )
4 divalg 12350 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
5 divalgb 12351 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
64, 5mpbid 147 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E! r  e.  NN0  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )
763expb 1207 . . 3  |-  ( ( N  e.  ZZ  /\  ( D  e.  ZZ  /\  D  =/=  0 ) )  ->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) )
83, 7sylan2 286 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
9 nnre 9078 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  RR )
10 nnnn0 9337 . . . . . . . 8  |-  ( D  e.  NN  ->  D  e.  NN0 )
1110nn0ge0d 9386 . . . . . . 7  |-  ( D  e.  NN  ->  0  <_  D )
129, 11absidd 11593 . . . . . 6  |-  ( D  e.  NN  ->  ( abs `  D )  =  D )
1312breq2d 4071 . . . . 5  |-  ( D  e.  NN  ->  (
r  <  ( abs `  D )  <->  r  <  D ) )
1413anbi1d 465 . . . 4  |-  ( D  e.  NN  ->  (
( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) )  <->  ( r  <  D  /\  D  ||  ( N  -  r
) ) ) )
1514reubidv 2693 . . 3  |-  ( D  e.  NN  ->  ( E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) )  <->  E! r  e.  NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
) ) )
1615adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E! r  e. 
NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
)  <->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) ) )
178, 16mpbid 147 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   E.wrex 2487   E!wreu 2488   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   0cc0 7960    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   NNcn 9071   NN0cn0 9330   ZZcz 9407   abscabs 11423    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214
This theorem is referenced by:  divalgmod  12353  ndvdssub  12356
  Copyright terms: Public domain W3C validator