ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  creur Unicode version

Theorem creur 9106
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem creur
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8142 . 2  |-  ( A  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w ) ) )
2 cru 8749 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
32ancoms 268 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
4 eqcom 2231 . . . . . . . . . 10  |-  ( ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) )  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) )
5 ancom 266 . . . . . . . . . 10  |-  ( ( y  =  w  /\  x  =  z )  <->  ( x  =  z  /\  y  =  w )
)
63, 4, 53bitr4g 223 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
( y  =  w  /\  x  =  z ) ) )
76anassrs 400 . . . . . . . 8  |-  ( ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  /\  y  e.  RR )  ->  (
( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  ( y  =  w  /\  x  =  z ) ) )
87rexbidva 2527 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( y  =  w  /\  x  =  z ) ) )
9 biidd 172 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  =  z  <->  x  =  z ) )
109ceqsrexv 2933 . . . . . . . 8  |-  ( w  e.  RR  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z
) )
1110ad2antlr 489 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z ) )
128, 11bitrd 188 . . . . . 6  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
x  =  z ) )
1312ralrimiva 2603 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )
14 reu6i 2994 . . . . 5  |-  ( ( z  e.  RR  /\  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
1513, 14syldan 282 . . . 4  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
16 eqeq1 2236 . . . . . 6  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  <->  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) ) ) )
1716rexbidv 2531 . . . . 5  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1817reubidv 2716 . . . 4  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  <->  E! x  e.  RR  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1915, 18syl5ibrcom 157 . . 3  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  ( A  =  ( z  +  ( _i  x.  w ) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
2019rexlimivv 2654 . 2  |-  ( E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w
) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
211, 20syl 14 1  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   E!wreu 2510  (class class class)co 6001   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator