ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  creui Unicode version

Theorem creui 8392
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creui  |-  ( A  e.  CC  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem creui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7463 . 2  |-  ( A  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w ) ) )
2 simpr 108 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  w  e.  RR )
3 eqcom 2090 . . . . . . . . . 10  |-  ( ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) )  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) )
4 cru 8055 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
54ancoms 264 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
63, 5syl5bb 190 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
76anass1rs 538 . . . . . . . 8  |-  ( ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  /\  x  e.  RR )  ->  (
( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  ( x  =  z  /\  y  =  w ) ) )
87rexbidva 2377 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <->  E. x  e.  RR  ( x  =  z  /\  y  =  w
) ) )
9 biidd 170 . . . . . . . . 9  |-  ( x  =  z  ->  (
y  =  w  <->  y  =  w ) )
109ceqsrexv 2745 . . . . . . . 8  |-  ( z  e.  RR  ->  ( E. x  e.  RR  ( x  =  z  /\  y  =  w
)  <->  y  =  w ) )
1110ad2antrr 472 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( x  =  z  /\  y  =  w )  <->  y  =  w ) )
128, 11bitrd 186 . . . . . 6  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
y  =  w ) )
1312ralrimiva 2446 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  A. y  e.  RR  ( E. x  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  y  =  w ) )
14 reu6i 2804 . . . . 5  |-  ( ( w  e.  RR  /\  A. y  e.  RR  ( E. x  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  y  =  w ) )  ->  E! y  e.  RR  E. x  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
152, 13, 14syl2anc 403 . . . 4  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  E! y  e.  RR  E. x  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
16 eqeq1 2094 . . . . . 6  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  <->  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) ) ) )
1716rexbidv 2381 . . . . 5  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  <->  E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1817reubidv 2550 . . . 4  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  <->  E! y  e.  RR  E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1915, 18syl5ibrcom 155 . . 3  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  ( A  =  ( z  +  ( _i  x.  w ) )  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
2019rexlimivv 2494 . 2  |-  ( E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w
) )  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
211, 20syl 14 1  |-  ( A  e.  CC  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   E!wreu 2361  (class class class)co 5634   CCcc 7327   RRcr 7328   _ici 7331    + caddc 7332    x. cmul 7334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-ltxr 7506  df-sub 7634  df-neg 7635  df-reap 8028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator