ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu Unicode version

Theorem srgideu 13930
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgideu  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Distinct variable groups:    x, u, B   
u, R, x    u,  .x. , x

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13926 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2229 . . . . 5  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2229 . . . . 5  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 13454 . . . 4  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . . 3  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 srgcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
81, 7mgpplusgg 13882 . . . . . . . 8  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
98oveqd 6017 . . . . . . 7  |-  ( R  e. SRing  ->  ( u  .x.  x )  =  ( u ( +g  `  (mulGrp `  R ) ) x ) )
109eqeq1d 2238 . . . . . 6  |-  ( R  e. SRing  ->  ( ( u 
.x.  x )  =  x  <->  ( u ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
118oveqd 6017 . . . . . . 7  |-  ( R  e. SRing  ->  ( x  .x.  u )  =  ( x ( +g  `  (mulGrp `  R ) ) u ) )
1211eqeq1d 2238 . . . . . 6  |-  ( R  e. SRing  ->  ( ( x 
.x.  u )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1310, 12anbi12d 473 . . . . 5  |-  ( R  e. SRing  ->  ( ( ( u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
1413ralbidv 2530 . . . 4  |-  ( R  e. SRing  ->  ( A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1514reubidv 2716 . . 3  |-  ( R  e. SRing  ->  ( E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
166, 15mpbird 167 . 2  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
17 srgcl.b . . . 4  |-  B  =  ( Base `  R
)
181, 17mgpbasg 13884 . . 3  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
19 raleq 2728 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x ) ) )
2019reueqd 2742 . . 3  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2118, 20syl 14 . 2  |-  ( R  e. SRing  ->  ( E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2216, 21mpbird 167 1  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E!wreu 2510   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   .rcmulr 13106   Mndcmnd 13444  mulGrpcmgp 13878  SRingcsrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922
This theorem is referenced by:  issrgid  13939
  Copyright terms: Public domain W3C validator