ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu Unicode version

Theorem srgideu 13468
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgideu  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Distinct variable groups:    x, u, B   
u, R, x    u,  .x. , x

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13464 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2193 . . . . 5  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2193 . . . . 5  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 13007 . . . 4  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . . 3  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 srgcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
81, 7mgpplusgg 13420 . . . . . . . 8  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
98oveqd 5935 . . . . . . 7  |-  ( R  e. SRing  ->  ( u  .x.  x )  =  ( u ( +g  `  (mulGrp `  R ) ) x ) )
109eqeq1d 2202 . . . . . 6  |-  ( R  e. SRing  ->  ( ( u 
.x.  x )  =  x  <->  ( u ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
118oveqd 5935 . . . . . . 7  |-  ( R  e. SRing  ->  ( x  .x.  u )  =  ( x ( +g  `  (mulGrp `  R ) ) u ) )
1211eqeq1d 2202 . . . . . 6  |-  ( R  e. SRing  ->  ( ( x 
.x.  u )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1310, 12anbi12d 473 . . . . 5  |-  ( R  e. SRing  ->  ( ( ( u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
1413ralbidv 2494 . . . 4  |-  ( R  e. SRing  ->  ( A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1514reubidv 2678 . . 3  |-  ( R  e. SRing  ->  ( E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
166, 15mpbird 167 . 2  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
17 srgcl.b . . . 4  |-  B  =  ( Base `  R
)
181, 17mgpbasg 13422 . . 3  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
19 raleq 2690 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x ) ) )
2019reueqd 2704 . . 3  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2118, 20syl 14 . 2  |-  ( R  e. SRing  ->  ( E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2216, 21mpbird 167 1  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E!wreu 2474   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Mndcmnd 12997  mulGrpcmgp 13416  SRingcsrg 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460
This theorem is referenced by:  issrgid  13477
  Copyright terms: Public domain W3C validator