ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu Unicode version

Theorem srgideu 13160
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgideu  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Distinct variable groups:    x, u, B   
u, R, x    u,  .x. , x

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2177 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13156 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2177 . . . . 5  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2177 . . . . 5  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 12832 . . . 4  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . . 3  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 srgcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
81, 7mgpplusgg 13139 . . . . . . . 8  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
98oveqd 5894 . . . . . . 7  |-  ( R  e. SRing  ->  ( u  .x.  x )  =  ( u ( +g  `  (mulGrp `  R ) ) x ) )
109eqeq1d 2186 . . . . . 6  |-  ( R  e. SRing  ->  ( ( u 
.x.  x )  =  x  <->  ( u ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
118oveqd 5894 . . . . . . 7  |-  ( R  e. SRing  ->  ( x  .x.  u )  =  ( x ( +g  `  (mulGrp `  R ) ) u ) )
1211eqeq1d 2186 . . . . . 6  |-  ( R  e. SRing  ->  ( ( x 
.x.  u )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1310, 12anbi12d 473 . . . . 5  |-  ( R  e. SRing  ->  ( ( ( u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
1413ralbidv 2477 . . . 4  |-  ( R  e. SRing  ->  ( A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1514reubidv 2661 . . 3  |-  ( R  e. SRing  ->  ( E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
166, 15mpbird 167 . 2  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
17 srgcl.b . . . 4  |-  B  =  ( Base `  R
)
181, 17mgpbasg 13141 . . 3  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
19 raleq 2673 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x ) ) )
2019reueqd 2683 . . 3  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2118, 20syl 14 . 2  |-  ( R  e. SRing  ->  ( E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2216, 21mpbird 167 1  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E!wreu 2457   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   Mndcmnd 12822  mulGrpcmgp 13135  SRingcsrg 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-mgp 13136  df-srg 13152
This theorem is referenced by:  issrgid  13169
  Copyright terms: Public domain W3C validator