ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu Unicode version

Theorem srgideu 12948
Description: The unit element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgideu  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Distinct variable groups:    x, u, B   
u, R, x    u,  .x. , x

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2175 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 12944 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2175 . . . . 5  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2175 . . . . 5  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 12692 . . . 4  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . . 3  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 srgcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
81, 7mgpplusgg 12929 . . . . . . . 8  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
98oveqd 5882 . . . . . . 7  |-  ( R  e. SRing  ->  ( u  .x.  x )  =  ( u ( +g  `  (mulGrp `  R ) ) x ) )
109eqeq1d 2184 . . . . . 6  |-  ( R  e. SRing  ->  ( ( u 
.x.  x )  =  x  <->  ( u ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
118oveqd 5882 . . . . . . 7  |-  ( R  e. SRing  ->  ( x  .x.  u )  =  ( x ( +g  `  (mulGrp `  R ) ) u ) )
1211eqeq1d 2184 . . . . . 6  |-  ( R  e. SRing  ->  ( ( x 
.x.  u )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1310, 12anbi12d 473 . . . . 5  |-  ( R  e. SRing  ->  ( ( ( u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
1413ralbidv 2475 . . . 4  |-  ( R  e. SRing  ->  ( A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1514reubidv 2658 . . 3  |-  ( R  e. SRing  ->  ( E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
166, 15mpbird 167 . 2  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
17 srgcl.b . . . 4  |-  B  =  ( Base `  R
)
181, 17mgpbasg 12930 . . 3  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
19 raleq 2670 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x ) ) )
2019reueqd 2680 . . 3  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2118, 20syl 14 . 2  |-  ( R  e. SRing  ->  ( E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2216, 21mpbird 167 1  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E!wreu 2455   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   Mndcmnd 12682  mulGrpcmgp 12925  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mgp 12926  df-srg 12940
This theorem is referenced by:  issrgid  12957
  Copyright terms: Public domain W3C validator