ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu Unicode version

Theorem srgideu 13676
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgideu  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Distinct variable groups:    x, u, B   
u, R, x    u,  .x. , x

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2204 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13672 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2204 . . . . 5  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2204 . . . . 5  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 13200 . . . 4  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . . 3  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 srgcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
81, 7mgpplusgg 13628 . . . . . . . 8  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
98oveqd 5960 . . . . . . 7  |-  ( R  e. SRing  ->  ( u  .x.  x )  =  ( u ( +g  `  (mulGrp `  R ) ) x ) )
109eqeq1d 2213 . . . . . 6  |-  ( R  e. SRing  ->  ( ( u 
.x.  x )  =  x  <->  ( u ( +g  `  (mulGrp `  R ) ) x )  =  x ) )
118oveqd 5960 . . . . . . 7  |-  ( R  e. SRing  ->  ( x  .x.  u )  =  ( x ( +g  `  (mulGrp `  R ) ) u ) )
1211eqeq1d 2213 . . . . . 6  |-  ( R  e. SRing  ->  ( ( x 
.x.  u )  =  x  <->  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1310, 12anbi12d 473 . . . . 5  |-  ( R  e. SRing  ->  ( ( ( u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
1413ralbidv 2505 . . . 4  |-  ( R  e. SRing  ->  ( A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1514reubidv 2689 . . 3  |-  ( R  e. SRing  ->  ( E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
166, 15mpbird 167 . 2  |-  ( R  e. SRing  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
17 srgcl.b . . . 4  |-  B  =  ( Base `  R
)
181, 17mgpbasg 13630 . . 3  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
19 raleq 2701 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x ) ) )
2019reueqd 2715 . . 3  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2118, 20syl 14 . 2  |-  ( R  e. SRing  ->  ( E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) ) )
2216, 21mpbird 167 1  |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u 
.x.  x )  =  x  /\  ( x 
.x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E!wreu 2485   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   .rcmulr 12852   Mndcmnd 13190  mulGrpcmgp 13624  SRingcsrg 13667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mgp 13625  df-srg 13668
This theorem is referenced by:  issrgid  13685
  Copyright terms: Public domain W3C validator