Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version |
Description: Lemma for acexmid 5841. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at equals , (2) the choice function evaluated at equals , and (3) the choice function evaluated at equals and the choice function evaluated at equals . Because of the way we represent the choice function , the choice function evaluated at is and the choice function evaluated at is . Other than the difference in notation these work just as and would if were a function as defined by df-fun 5190. Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at equals , then and likewise for . (Contributed by Jim Kingdon, 7-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | |
acexmidlem.b | |
acexmidlem.c |
Ref | Expression |
---|---|
acexmidlemcase |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . . . . . . . . . . . . 14 | |
2 | onsucelsucexmidlem 4506 | . . . . . . . . . . . . . 14 | |
3 | 1, 2 | eqeltri 2239 | . . . . . . . . . . . . 13 |
4 | prid1g 3680 | . . . . . . . . . . . . 13 | |
5 | 3, 4 | ax-mp 5 | . . . . . . . . . . . 12 |
6 | acexmidlem.c | . . . . . . . . . . . 12 | |
7 | 5, 6 | eleqtrri 2242 | . . . . . . . . . . 11 |
8 | eleq1 2229 | . . . . . . . . . . . . . . 15 | |
9 | 8 | anbi1d 461 | . . . . . . . . . . . . . 14 |
10 | 9 | rexbidv 2467 | . . . . . . . . . . . . 13 |
11 | 10 | reueqd 2671 | . . . . . . . . . . . 12 |
12 | 11 | rspcv 2826 | . . . . . . . . . . 11 |
13 | 7, 12 | ax-mp 5 | . . . . . . . . . 10 |
14 | riotacl 5812 | . . . . . . . . . 10 | |
15 | 13, 14 | syl 14 | . . . . . . . . 9 |
16 | elrabi 2879 | . . . . . . . . . 10 | |
17 | 16, 1 | eleq2s 2261 | . . . . . . . . 9 |
18 | elpri 3599 | . . . . . . . . 9 | |
19 | 15, 17, 18 | 3syl 17 | . . . . . . . 8 |
20 | eleq1 2229 | . . . . . . . . . 10 | |
21 | 15, 20 | syl5ibcom 154 | . . . . . . . . 9 |
22 | 21 | orim2d 778 | . . . . . . . 8 |
23 | 19, 22 | mpd 13 | . . . . . . 7 |
24 | acexmidlem.b | . . . . . . . . . . . . . 14 | |
25 | pp0ex 4168 | . . . . . . . . . . . . . . 15 | |
26 | 25 | rabex 4126 | . . . . . . . . . . . . . 14 |
27 | 24, 26 | eqeltri 2239 | . . . . . . . . . . . . 13 |
28 | 27 | prid2 3683 | . . . . . . . . . . . 12 |
29 | 28, 6 | eleqtrri 2242 | . . . . . . . . . . 11 |
30 | eleq1 2229 | . . . . . . . . . . . . . . 15 | |
31 | 30 | anbi1d 461 | . . . . . . . . . . . . . 14 |
32 | 31 | rexbidv 2467 | . . . . . . . . . . . . 13 |
33 | 32 | reueqd 2671 | . . . . . . . . . . . 12 |
34 | 33 | rspcv 2826 | . . . . . . . . . . 11 |
35 | 29, 34 | ax-mp 5 | . . . . . . . . . 10 |
36 | riotacl 5812 | . . . . . . . . . 10 | |
37 | 35, 36 | syl 14 | . . . . . . . . 9 |
38 | elrabi 2879 | . . . . . . . . . 10 | |
39 | 38, 24 | eleq2s 2261 | . . . . . . . . 9 |
40 | elpri 3599 | . . . . . . . . 9 | |
41 | 37, 39, 40 | 3syl 17 | . . . . . . . 8 |
42 | eleq1 2229 | . . . . . . . . . 10 | |
43 | 37, 42 | syl5ibcom 154 | . . . . . . . . 9 |
44 | 43 | orim1d 777 | . . . . . . . 8 |
45 | 41, 44 | mpd 13 | . . . . . . 7 |
46 | 23, 45 | jca 304 | . . . . . 6 |
47 | anddi 811 | . . . . . 6 | |
48 | 46, 47 | sylib 121 | . . . . 5 |
49 | simpl 108 | . . . . . . 7 | |
50 | simpl 108 | . . . . . . 7 | |
51 | 49, 50 | jaoi 706 | . . . . . 6 |
52 | 51 | orim2i 751 | . . . . 5 |
53 | 48, 52 | syl 14 | . . . 4 |
54 | 53 | orcomd 719 | . . 3 |
55 | simpr 109 | . . . . 5 | |
56 | 55 | orim1i 750 | . . . 4 |
57 | 56 | orim2i 751 | . . 3 |
58 | 54, 57 | syl 14 | . 2 |
59 | 3orass 971 | . 2 | |
60 | 58, 59 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 967 wceq 1343 wcel 2136 wral 2444 wrex 2445 wreu 2446 crab 2448 cvv 2726 c0 3409 csn 3576 cpr 3577 con0 4341 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iota 5153 df-riota 5798 |
This theorem is referenced by: acexmidlem1 5838 |
Copyright terms: Public domain | W3C validator |