| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version | ||
| Description: Lemma for acexmid 5999. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemcase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . . . . . . . . . . . 14
| |
| 2 | onsucelsucexmidlem 4620 |
. . . . . . . . . . . . . 14
| |
| 3 | 1, 2 | eqeltri 2302 |
. . . . . . . . . . . . 13
|
| 4 | prid1g 3770 |
. . . . . . . . . . . . 13
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 6 | acexmidlem.c |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | eleqtrri 2305 |
. . . . . . . . . . 11
|
| 8 | eleq1 2292 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexbidv 2531 |
. . . . . . . . . . . . 13
|
| 11 | 10 | reueqd 2742 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspcv 2903 |
. . . . . . . . . . 11
|
| 13 | 7, 12 | ax-mp 5 |
. . . . . . . . . 10
|
| 14 | riotacl 5969 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | elrabi 2956 |
. . . . . . . . . 10
| |
| 17 | 16, 1 | eleq2s 2324 |
. . . . . . . . 9
|
| 18 | elpri 3689 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | 3syl 17 |
. . . . . . . 8
|
| 20 | eleq1 2292 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibcom 155 |
. . . . . . . . 9
|
| 22 | 21 | orim2d 793 |
. . . . . . . 8
|
| 23 | 19, 22 | mpd 13 |
. . . . . . 7
|
| 24 | acexmidlem.b |
. . . . . . . . . . . . . 14
| |
| 25 | pp0ex 4272 |
. . . . . . . . . . . . . . 15
| |
| 26 | 25 | rabex 4227 |
. . . . . . . . . . . . . 14
|
| 27 | 24, 26 | eqeltri 2302 |
. . . . . . . . . . . . 13
|
| 28 | 27 | prid2 3773 |
. . . . . . . . . . . 12
|
| 29 | 28, 6 | eleqtrri 2305 |
. . . . . . . . . . 11
|
| 30 | eleq1 2292 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | rexbidv 2531 |
. . . . . . . . . . . . 13
|
| 33 | 32 | reueqd 2742 |
. . . . . . . . . . . 12
|
| 34 | 33 | rspcv 2903 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | riotacl 5969 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | elrabi 2956 |
. . . . . . . . . 10
| |
| 39 | 38, 24 | eleq2s 2324 |
. . . . . . . . 9
|
| 40 | elpri 3689 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | 3syl 17 |
. . . . . . . 8
|
| 42 | eleq1 2292 |
. . . . . . . . . 10
| |
| 43 | 37, 42 | syl5ibcom 155 |
. . . . . . . . 9
|
| 44 | 43 | orim1d 792 |
. . . . . . . 8
|
| 45 | 41, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 23, 45 | jca 306 |
. . . . . 6
|
| 47 | anddi 826 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 122 |
. . . . 5
|
| 49 | simpl 109 |
. . . . . . 7
| |
| 50 | simpl 109 |
. . . . . . 7
| |
| 51 | 49, 50 | jaoi 721 |
. . . . . 6
|
| 52 | 51 | orim2i 766 |
. . . . 5
|
| 53 | 48, 52 | syl 14 |
. . . 4
|
| 54 | 53 | orcomd 734 |
. . 3
|
| 55 | simpr 110 |
. . . . 5
| |
| 56 | 55 | orim1i 765 |
. . . 4
|
| 57 | 56 | orim2i 766 |
. . 3
|
| 58 | 54, 57 | syl 14 |
. 2
|
| 59 | 3orass 1005 |
. 2
| |
| 60 | 58, 59 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-iota 5277 df-riota 5953 |
| This theorem is referenced by: acexmidlem1 5996 |
| Copyright terms: Public domain | W3C validator |