| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version | ||
| Description: Lemma for acexmid 5961. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemcase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . . . . . . . . . . . 14
| |
| 2 | onsucelsucexmidlem 4590 |
. . . . . . . . . . . . . 14
| |
| 3 | 1, 2 | eqeltri 2279 |
. . . . . . . . . . . . 13
|
| 4 | prid1g 3742 |
. . . . . . . . . . . . 13
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 6 | acexmidlem.c |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | eleqtrri 2282 |
. . . . . . . . . . 11
|
| 8 | eleq1 2269 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexbidv 2508 |
. . . . . . . . . . . . 13
|
| 11 | 10 | reueqd 2717 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspcv 2877 |
. . . . . . . . . . 11
|
| 13 | 7, 12 | ax-mp 5 |
. . . . . . . . . 10
|
| 14 | riotacl 5932 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | elrabi 2930 |
. . . . . . . . . 10
| |
| 17 | 16, 1 | eleq2s 2301 |
. . . . . . . . 9
|
| 18 | elpri 3661 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | 3syl 17 |
. . . . . . . 8
|
| 20 | eleq1 2269 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibcom 155 |
. . . . . . . . 9
|
| 22 | 21 | orim2d 790 |
. . . . . . . 8
|
| 23 | 19, 22 | mpd 13 |
. . . . . . 7
|
| 24 | acexmidlem.b |
. . . . . . . . . . . . . 14
| |
| 25 | pp0ex 4244 |
. . . . . . . . . . . . . . 15
| |
| 26 | 25 | rabex 4199 |
. . . . . . . . . . . . . 14
|
| 27 | 24, 26 | eqeltri 2279 |
. . . . . . . . . . . . 13
|
| 28 | 27 | prid2 3745 |
. . . . . . . . . . . 12
|
| 29 | 28, 6 | eleqtrri 2282 |
. . . . . . . . . . 11
|
| 30 | eleq1 2269 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | rexbidv 2508 |
. . . . . . . . . . . . 13
|
| 33 | 32 | reueqd 2717 |
. . . . . . . . . . . 12
|
| 34 | 33 | rspcv 2877 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | riotacl 5932 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | elrabi 2930 |
. . . . . . . . . 10
| |
| 39 | 38, 24 | eleq2s 2301 |
. . . . . . . . 9
|
| 40 | elpri 3661 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | 3syl 17 |
. . . . . . . 8
|
| 42 | eleq1 2269 |
. . . . . . . . . 10
| |
| 43 | 37, 42 | syl5ibcom 155 |
. . . . . . . . 9
|
| 44 | 43 | orim1d 789 |
. . . . . . . 8
|
| 45 | 41, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 23, 45 | jca 306 |
. . . . . 6
|
| 47 | anddi 823 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 122 |
. . . . 5
|
| 49 | simpl 109 |
. . . . . . 7
| |
| 50 | simpl 109 |
. . . . . . 7
| |
| 51 | 49, 50 | jaoi 718 |
. . . . . 6
|
| 52 | 51 | orim2i 763 |
. . . . 5
|
| 53 | 48, 52 | syl 14 |
. . . 4
|
| 54 | 53 | orcomd 731 |
. . 3
|
| 55 | simpr 110 |
. . . . 5
| |
| 56 | 55 | orim1i 762 |
. . . 4
|
| 57 | 56 | orim2i 763 |
. . 3
|
| 58 | 54, 57 | syl 14 |
. 2
|
| 59 | 3orass 984 |
. 2
| |
| 60 | 58, 59 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-tr 4154 df-iord 4426 df-on 4428 df-suc 4431 df-iota 5246 df-riota 5917 |
| This theorem is referenced by: acexmidlem1 5958 |
| Copyright terms: Public domain | W3C validator |