| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version | ||
| Description: Lemma for acexmid 5924. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemcase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . . . . . . . . . . . 14
| |
| 2 | onsucelsucexmidlem 4566 |
. . . . . . . . . . . . . 14
| |
| 3 | 1, 2 | eqeltri 2269 |
. . . . . . . . . . . . 13
|
| 4 | prid1g 3727 |
. . . . . . . . . . . . 13
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 6 | acexmidlem.c |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | eleqtrri 2272 |
. . . . . . . . . . 11
|
| 8 | eleq1 2259 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexbidv 2498 |
. . . . . . . . . . . . 13
|
| 11 | 10 | reueqd 2707 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspcv 2864 |
. . . . . . . . . . 11
|
| 13 | 7, 12 | ax-mp 5 |
. . . . . . . . . 10
|
| 14 | riotacl 5895 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | elrabi 2917 |
. . . . . . . . . 10
| |
| 17 | 16, 1 | eleq2s 2291 |
. . . . . . . . 9
|
| 18 | elpri 3646 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | 3syl 17 |
. . . . . . . 8
|
| 20 | eleq1 2259 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibcom 155 |
. . . . . . . . 9
|
| 22 | 21 | orim2d 789 |
. . . . . . . 8
|
| 23 | 19, 22 | mpd 13 |
. . . . . . 7
|
| 24 | acexmidlem.b |
. . . . . . . . . . . . . 14
| |
| 25 | pp0ex 4223 |
. . . . . . . . . . . . . . 15
| |
| 26 | 25 | rabex 4178 |
. . . . . . . . . . . . . 14
|
| 27 | 24, 26 | eqeltri 2269 |
. . . . . . . . . . . . 13
|
| 28 | 27 | prid2 3730 |
. . . . . . . . . . . 12
|
| 29 | 28, 6 | eleqtrri 2272 |
. . . . . . . . . . 11
|
| 30 | eleq1 2259 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | rexbidv 2498 |
. . . . . . . . . . . . 13
|
| 33 | 32 | reueqd 2707 |
. . . . . . . . . . . 12
|
| 34 | 33 | rspcv 2864 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | riotacl 5895 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | elrabi 2917 |
. . . . . . . . . 10
| |
| 39 | 38, 24 | eleq2s 2291 |
. . . . . . . . 9
|
| 40 | elpri 3646 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | 3syl 17 |
. . . . . . . 8
|
| 42 | eleq1 2259 |
. . . . . . . . . 10
| |
| 43 | 37, 42 | syl5ibcom 155 |
. . . . . . . . 9
|
| 44 | 43 | orim1d 788 |
. . . . . . . 8
|
| 45 | 41, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 23, 45 | jca 306 |
. . . . . 6
|
| 47 | anddi 822 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 122 |
. . . . 5
|
| 49 | simpl 109 |
. . . . . . 7
| |
| 50 | simpl 109 |
. . . . . . 7
| |
| 51 | 49, 50 | jaoi 717 |
. . . . . 6
|
| 52 | 51 | orim2i 762 |
. . . . 5
|
| 53 | 48, 52 | syl 14 |
. . . 4
|
| 54 | 53 | orcomd 730 |
. . 3
|
| 55 | simpr 110 |
. . . . 5
| |
| 56 | 55 | orim1i 761 |
. . . 4
|
| 57 | 56 | orim2i 762 |
. . 3
|
| 58 | 54, 57 | syl 14 |
. 2
|
| 59 | 3orass 983 |
. 2
| |
| 60 | 58, 59 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iota 5220 df-riota 5880 |
| This theorem is referenced by: acexmidlem1 5921 |
| Copyright terms: Public domain | W3C validator |