ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase Unicode version

Theorem acexmidlemcase 5883
Description: Lemma for acexmid 5887. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5230.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemcase  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 onsucelsucexmidlem 4540 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
31, 2eqeltri 2260 . . . . . . . . . . . . 13  |-  A  e.  On
4 prid1g 3708 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  e.  { A ,  B } )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  A  e. 
{ A ,  B }
6 acexmidlem.c . . . . . . . . . . . 12  |-  C  =  { A ,  B }
75, 6eleqtrri 2263 . . . . . . . . . . 11  |-  A  e.  C
8 eleq1 2250 . . . . . . . . . . . . . . 15  |-  ( z  =  A  ->  (
z  e.  u  <->  A  e.  u ) )
98anbi1d 465 . . . . . . . . . . . . . 14  |-  ( z  =  A  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( A  e.  u  /\  v  e.  u ) ) )
109rexbidv 2488 . . . . . . . . . . . . 13  |-  ( z  =  A  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( A  e.  u  /\  v  e.  u
) ) )
1110reueqd 2693 . . . . . . . . . . . 12  |-  ( z  =  A  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) ) )
1211rspcv 2849 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) ) )
137, 12ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )
14 riotacl 5858 . . . . . . . . . 10  |-  ( E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
1513, 14syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
16 elrabi 2902 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  ->  (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
1716, 1eleq2s 2282 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
18 elpri 3627 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
1915, 17, 183syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
20 eleq1 2250 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  { (/)
}  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  e.  A  <->  { (/) }  e.  A ) )
2115, 20syl5ibcom 155 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) }  ->  { (/) }  e.  A ) )
2221orim2d 789 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) ) )
2319, 22mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) )
24 acexmidlem.b . . . . . . . . . . . . . 14  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
25 pp0ex 4201 . . . . . . . . . . . . . . 15  |-  { (/) ,  { (/) } }  e.  _V
2625rabex 4159 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  e.  _V
2724, 26eqeltri 2260 . . . . . . . . . . . . 13  |-  B  e. 
_V
2827prid2 3711 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
2928, 6eleqtrri 2263 . . . . . . . . . . 11  |-  B  e.  C
30 eleq1 2250 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
z  e.  u  <->  B  e.  u ) )
3130anbi1d 465 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
3231rexbidv 2488 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
3332reueqd 2693 . . . . . . . . . . . 12  |-  ( z  =  B  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
3433rspcv 2849 . . . . . . . . . . 11  |-  ( B  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
3529, 34ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )
36 riotacl 5858 . . . . . . . . . 10  |-  ( E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
3735, 36syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
38 elrabi 2902 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) }  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e. 
{ (/) ,  { (/) } } )
3938, 24eleq2s 2282 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
40 elpri 3627 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
4137, 39, 403syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
42 eleq1 2250 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/)  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e.  B  <->  (/)  e.  B ) )
4337, 42syl5ibcom 155 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  ->  (/)  e.  B ) )
4443orim1d 788 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) ) )
4541, 44mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) )
4623, 45jca 306 . . . . . 6  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )
47 anddi 822 . . . . . 6  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  <->  ( (
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
4846, 47sylib 122 . . . . 5  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
49 simpl 109 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  (/)  e.  B )  ->  { (/) }  e.  A )
50 simpl 109 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  { (/) }  e.  A )
5149, 50jaoi 717 . . . . . 6  |-  ( ( ( { (/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  { (/) }  e.  A )
5251orim2i 762 . . . . 5  |-  ( ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )  -> 
( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5348, 52syl 14 . . . 4  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5453orcomd 730 . . 3  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (
( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
55 simpr 110 . . . . 5  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  ->  (/) 
e.  B )
5655orim1i 761 . . . 4  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
5756orim2i 762 . . 3  |-  ( ( { (/) }  e.  A  \/  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )  ->  ( { (/)
}  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
5854, 57syl 14 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
59 3orass 982 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  <-> 
( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
6058, 59sylibr 134 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 978    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   E!wreu 2467   {crab 2469   _Vcvv 2749   (/)c0 3434   {csn 3604   {cpr 3605   Oncon0 4375   iota_crio 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383  df-iota 5190  df-riota 5844
This theorem is referenced by:  acexmidlem1  5884
  Copyright terms: Public domain W3C validator