ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase Unicode version

Theorem acexmidlemcase 5864
Description: Lemma for acexmid 5868. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5214.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemcase  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 onsucelsucexmidlem 4525 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
31, 2eqeltri 2250 . . . . . . . . . . . . 13  |-  A  e.  On
4 prid1g 3695 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  e.  { A ,  B } )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  A  e. 
{ A ,  B }
6 acexmidlem.c . . . . . . . . . . . 12  |-  C  =  { A ,  B }
75, 6eleqtrri 2253 . . . . . . . . . . 11  |-  A  e.  C
8 eleq1 2240 . . . . . . . . . . . . . . 15  |-  ( z  =  A  ->  (
z  e.  u  <->  A  e.  u ) )
98anbi1d 465 . . . . . . . . . . . . . 14  |-  ( z  =  A  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( A  e.  u  /\  v  e.  u ) ) )
109rexbidv 2478 . . . . . . . . . . . . 13  |-  ( z  =  A  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( A  e.  u  /\  v  e.  u
) ) )
1110reueqd 2682 . . . . . . . . . . . 12  |-  ( z  =  A  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) ) )
1211rspcv 2837 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) ) )
137, 12ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )
14 riotacl 5839 . . . . . . . . . 10  |-  ( E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
1513, 14syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
16 elrabi 2890 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  ->  (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
1716, 1eleq2s 2272 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
18 elpri 3614 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
1915, 17, 183syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
20 eleq1 2240 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  { (/)
}  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  e.  A  <->  { (/) }  e.  A ) )
2115, 20syl5ibcom 155 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) }  ->  { (/) }  e.  A ) )
2221orim2d 788 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) ) )
2319, 22mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) )
24 acexmidlem.b . . . . . . . . . . . . . 14  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
25 pp0ex 4186 . . . . . . . . . . . . . . 15  |-  { (/) ,  { (/) } }  e.  _V
2625rabex 4144 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  e.  _V
2724, 26eqeltri 2250 . . . . . . . . . . . . 13  |-  B  e. 
_V
2827prid2 3698 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
2928, 6eleqtrri 2253 . . . . . . . . . . 11  |-  B  e.  C
30 eleq1 2240 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
z  e.  u  <->  B  e.  u ) )
3130anbi1d 465 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
3231rexbidv 2478 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
3332reueqd 2682 . . . . . . . . . . . 12  |-  ( z  =  B  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
3433rspcv 2837 . . . . . . . . . . 11  |-  ( B  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
3529, 34ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )
36 riotacl 5839 . . . . . . . . . 10  |-  ( E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
3735, 36syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
38 elrabi 2890 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) }  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e. 
{ (/) ,  { (/) } } )
3938, 24eleq2s 2272 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
40 elpri 3614 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
4137, 39, 403syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
42 eleq1 2240 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/)  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e.  B  <->  (/)  e.  B ) )
4337, 42syl5ibcom 155 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  ->  (/)  e.  B ) )
4443orim1d 787 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) ) )
4541, 44mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) )
4623, 45jca 306 . . . . . 6  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )
47 anddi 821 . . . . . 6  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  <->  ( (
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
4846, 47sylib 122 . . . . 5  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
49 simpl 109 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  (/)  e.  B )  ->  { (/) }  e.  A )
50 simpl 109 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  { (/) }  e.  A )
5149, 50jaoi 716 . . . . . 6  |-  ( ( ( { (/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  { (/) }  e.  A )
5251orim2i 761 . . . . 5  |-  ( ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )  -> 
( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5348, 52syl 14 . . . 4  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5453orcomd 729 . . 3  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (
( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
55 simpr 110 . . . . 5  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  ->  (/) 
e.  B )
5655orim1i 760 . . . 4  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
5756orim2i 761 . . 3  |-  ( ( { (/) }  e.  A  \/  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )  ->  ( { (/)
}  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
5854, 57syl 14 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
59 3orass 981 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  <-> 
( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
6058, 59sylibr 134 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   E!wreu 2457   {crab 2459   _Vcvv 2737   (/)c0 3422   {csn 3591   {cpr 3592   Oncon0 4360   iota_crio 5824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-uni 3808  df-tr 4099  df-iord 4363  df-on 4365  df-suc 4368  df-iota 5174  df-riota 5825
This theorem is referenced by:  acexmidlem1  5865
  Copyright terms: Public domain W3C validator