ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase Unicode version

Theorem acexmidlemcase 5777
Description: Lemma for acexmid 5781. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5133.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemcase  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 onsucelsucexmidlem 4452 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
31, 2eqeltri 2213 . . . . . . . . . . . . 13  |-  A  e.  On
4 prid1g 3635 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  e.  { A ,  B } )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  A  e. 
{ A ,  B }
6 acexmidlem.c . . . . . . . . . . . 12  |-  C  =  { A ,  B }
75, 6eleqtrri 2216 . . . . . . . . . . 11  |-  A  e.  C
8 eleq1 2203 . . . . . . . . . . . . . . 15  |-  ( z  =  A  ->  (
z  e.  u  <->  A  e.  u ) )
98anbi1d 461 . . . . . . . . . . . . . 14  |-  ( z  =  A  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( A  e.  u  /\  v  e.  u ) ) )
109rexbidv 2439 . . . . . . . . . . . . 13  |-  ( z  =  A  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( A  e.  u  /\  v  e.  u
) ) )
1110reueqd 2639 . . . . . . . . . . . 12  |-  ( z  =  A  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) ) )
1211rspcv 2789 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) ) )
137, 12ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )
14 riotacl 5752 . . . . . . . . . 10  |-  ( E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
1513, 14syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
16 elrabi 2841 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  ->  (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
1716, 1eleq2s 2235 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
18 elpri 3555 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
1915, 17, 183syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
20 eleq1 2203 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  { (/)
}  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  e.  A  <->  { (/) }  e.  A ) )
2115, 20syl5ibcom 154 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) }  ->  { (/) }  e.  A ) )
2221orim2d 778 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) ) )
2319, 22mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) )
24 acexmidlem.b . . . . . . . . . . . . . 14  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
25 pp0ex 4121 . . . . . . . . . . . . . . 15  |-  { (/) ,  { (/) } }  e.  _V
2625rabex 4080 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  e.  _V
2724, 26eqeltri 2213 . . . . . . . . . . . . 13  |-  B  e. 
_V
2827prid2 3638 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
2928, 6eleqtrri 2216 . . . . . . . . . . 11  |-  B  e.  C
30 eleq1 2203 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
z  e.  u  <->  B  e.  u ) )
3130anbi1d 461 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
3231rexbidv 2439 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
3332reueqd 2639 . . . . . . . . . . . 12  |-  ( z  =  B  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
3433rspcv 2789 . . . . . . . . . . 11  |-  ( B  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
3529, 34ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )
36 riotacl 5752 . . . . . . . . . 10  |-  ( E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
3735, 36syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
38 elrabi 2841 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) }  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e. 
{ (/) ,  { (/) } } )
3938, 24eleq2s 2235 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
40 elpri 3555 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
4137, 39, 403syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
42 eleq1 2203 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/)  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e.  B  <->  (/)  e.  B ) )
4337, 42syl5ibcom 154 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  ->  (/)  e.  B ) )
4443orim1d 777 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) ) )
4541, 44mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) )
4623, 45jca 304 . . . . . 6  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )
47 anddi 811 . . . . . 6  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  <->  ( (
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
4846, 47sylib 121 . . . . 5  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
49 simpl 108 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  (/)  e.  B )  ->  { (/) }  e.  A )
50 simpl 108 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  { (/) }  e.  A )
5149, 50jaoi 706 . . . . . 6  |-  ( ( ( { (/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  { (/) }  e.  A )
5251orim2i 751 . . . . 5  |-  ( ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )  -> 
( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5348, 52syl 14 . . . 4  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5453orcomd 719 . . 3  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (
( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
55 simpr 109 . . . . 5  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  ->  (/) 
e.  B )
5655orim1i 750 . . . 4  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
5756orim2i 751 . . 3  |-  ( ( { (/) }  e.  A  \/  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )  ->  ( { (/)
}  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
5854, 57syl 14 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
59 3orass 966 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  <-> 
( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
6058, 59sylibr 133 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    \/ w3o 962    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   E!wreu 2419   {crab 2421   _Vcvv 2689   (/)c0 3368   {csn 3532   {cpr 3533   Oncon0 4293   iota_crio 5737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301  df-iota 5096  df-riota 5738
This theorem is referenced by:  acexmidlem1  5778
  Copyright terms: Public domain W3C validator