| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version | ||
| Description: Lemma for acexmid 5942. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemcase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . . . . . . . . . . . 14
| |
| 2 | onsucelsucexmidlem 4576 |
. . . . . . . . . . . . . 14
| |
| 3 | 1, 2 | eqeltri 2277 |
. . . . . . . . . . . . 13
|
| 4 | prid1g 3736 |
. . . . . . . . . . . . 13
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 6 | acexmidlem.c |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | eleqtrri 2280 |
. . . . . . . . . . 11
|
| 8 | eleq1 2267 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexbidv 2506 |
. . . . . . . . . . . . 13
|
| 11 | 10 | reueqd 2715 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspcv 2872 |
. . . . . . . . . . 11
|
| 13 | 7, 12 | ax-mp 5 |
. . . . . . . . . 10
|
| 14 | riotacl 5913 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | elrabi 2925 |
. . . . . . . . . 10
| |
| 17 | 16, 1 | eleq2s 2299 |
. . . . . . . . 9
|
| 18 | elpri 3655 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | 3syl 17 |
. . . . . . . 8
|
| 20 | eleq1 2267 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibcom 155 |
. . . . . . . . 9
|
| 22 | 21 | orim2d 789 |
. . . . . . . 8
|
| 23 | 19, 22 | mpd 13 |
. . . . . . 7
|
| 24 | acexmidlem.b |
. . . . . . . . . . . . . 14
| |
| 25 | pp0ex 4232 |
. . . . . . . . . . . . . . 15
| |
| 26 | 25 | rabex 4187 |
. . . . . . . . . . . . . 14
|
| 27 | 24, 26 | eqeltri 2277 |
. . . . . . . . . . . . 13
|
| 28 | 27 | prid2 3739 |
. . . . . . . . . . . 12
|
| 29 | 28, 6 | eleqtrri 2280 |
. . . . . . . . . . 11
|
| 30 | eleq1 2267 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | rexbidv 2506 |
. . . . . . . . . . . . 13
|
| 33 | 32 | reueqd 2715 |
. . . . . . . . . . . 12
|
| 34 | 33 | rspcv 2872 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | riotacl 5913 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | elrabi 2925 |
. . . . . . . . . 10
| |
| 39 | 38, 24 | eleq2s 2299 |
. . . . . . . . 9
|
| 40 | elpri 3655 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | 3syl 17 |
. . . . . . . 8
|
| 42 | eleq1 2267 |
. . . . . . . . . 10
| |
| 43 | 37, 42 | syl5ibcom 155 |
. . . . . . . . 9
|
| 44 | 43 | orim1d 788 |
. . . . . . . 8
|
| 45 | 41, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 23, 45 | jca 306 |
. . . . . 6
|
| 47 | anddi 822 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 122 |
. . . . 5
|
| 49 | simpl 109 |
. . . . . . 7
| |
| 50 | simpl 109 |
. . . . . . 7
| |
| 51 | 49, 50 | jaoi 717 |
. . . . . 6
|
| 52 | 51 | orim2i 762 |
. . . . 5
|
| 53 | 48, 52 | syl 14 |
. . . 4
|
| 54 | 53 | orcomd 730 |
. . 3
|
| 55 | simpr 110 |
. . . . 5
| |
| 56 | 55 | orim1i 761 |
. . . 4
|
| 57 | 56 | orim2i 762 |
. . 3
|
| 58 | 54, 57 | syl 14 |
. 2
|
| 59 | 3orass 983 |
. 2
| |
| 60 | 58, 59 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 df-iota 5231 df-riota 5898 |
| This theorem is referenced by: acexmidlem1 5939 |
| Copyright terms: Public domain | W3C validator |