| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemcase | Unicode version | ||
| Description: Lemma for acexmid 5943. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemcase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a |
. . . . . . . . . . . . . 14
| |
| 2 | onsucelsucexmidlem 4577 |
. . . . . . . . . . . . . 14
| |
| 3 | 1, 2 | eqeltri 2278 |
. . . . . . . . . . . . 13
|
| 4 | prid1g 3737 |
. . . . . . . . . . . . 13
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 6 | acexmidlem.c |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | eleqtrri 2281 |
. . . . . . . . . . 11
|
| 8 | eleq1 2268 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexbidv 2507 |
. . . . . . . . . . . . 13
|
| 11 | 10 | reueqd 2716 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspcv 2873 |
. . . . . . . . . . 11
|
| 13 | 7, 12 | ax-mp 5 |
. . . . . . . . . 10
|
| 14 | riotacl 5914 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | elrabi 2926 |
. . . . . . . . . 10
| |
| 17 | 16, 1 | eleq2s 2300 |
. . . . . . . . 9
|
| 18 | elpri 3656 |
. . . . . . . . 9
| |
| 19 | 15, 17, 18 | 3syl 17 |
. . . . . . . 8
|
| 20 | eleq1 2268 |
. . . . . . . . . 10
| |
| 21 | 15, 20 | syl5ibcom 155 |
. . . . . . . . 9
|
| 22 | 21 | orim2d 790 |
. . . . . . . 8
|
| 23 | 19, 22 | mpd 13 |
. . . . . . 7
|
| 24 | acexmidlem.b |
. . . . . . . . . . . . . 14
| |
| 25 | pp0ex 4233 |
. . . . . . . . . . . . . . 15
| |
| 26 | 25 | rabex 4188 |
. . . . . . . . . . . . . 14
|
| 27 | 24, 26 | eqeltri 2278 |
. . . . . . . . . . . . 13
|
| 28 | 27 | prid2 3740 |
. . . . . . . . . . . 12
|
| 29 | 28, 6 | eleqtrri 2281 |
. . . . . . . . . . 11
|
| 30 | eleq1 2268 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | rexbidv 2507 |
. . . . . . . . . . . . 13
|
| 33 | 32 | reueqd 2716 |
. . . . . . . . . . . 12
|
| 34 | 33 | rspcv 2873 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | ax-mp 5 |
. . . . . . . . . 10
|
| 36 | riotacl 5914 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | elrabi 2926 |
. . . . . . . . . 10
| |
| 39 | 38, 24 | eleq2s 2300 |
. . . . . . . . 9
|
| 40 | elpri 3656 |
. . . . . . . . 9
| |
| 41 | 37, 39, 40 | 3syl 17 |
. . . . . . . 8
|
| 42 | eleq1 2268 |
. . . . . . . . . 10
| |
| 43 | 37, 42 | syl5ibcom 155 |
. . . . . . . . 9
|
| 44 | 43 | orim1d 789 |
. . . . . . . 8
|
| 45 | 41, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 23, 45 | jca 306 |
. . . . . 6
|
| 47 | anddi 823 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 122 |
. . . . 5
|
| 49 | simpl 109 |
. . . . . . 7
| |
| 50 | simpl 109 |
. . . . . . 7
| |
| 51 | 49, 50 | jaoi 718 |
. . . . . 6
|
| 52 | 51 | orim2i 763 |
. . . . 5
|
| 53 | 48, 52 | syl 14 |
. . . 4
|
| 54 | 53 | orcomd 731 |
. . 3
|
| 55 | simpr 110 |
. . . . 5
| |
| 56 | 55 | orim1i 762 |
. . . 4
|
| 57 | 56 | orim2i 763 |
. . 3
|
| 58 | 54, 57 | syl 14 |
. 2
|
| 59 | 3orass 984 |
. 2
| |
| 60 | 58, 59 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iota 5232 df-riota 5899 |
| This theorem is referenced by: acexmidlem1 5940 |
| Copyright terms: Public domain | W3C validator |