ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase Unicode version

Theorem acexmidlemcase 5837
Description: Lemma for acexmid 5841. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5190.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemcase  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 onsucelsucexmidlem 4506 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
31, 2eqeltri 2239 . . . . . . . . . . . . 13  |-  A  e.  On
4 prid1g 3680 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  e.  { A ,  B } )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  A  e. 
{ A ,  B }
6 acexmidlem.c . . . . . . . . . . . 12  |-  C  =  { A ,  B }
75, 6eleqtrri 2242 . . . . . . . . . . 11  |-  A  e.  C
8 eleq1 2229 . . . . . . . . . . . . . . 15  |-  ( z  =  A  ->  (
z  e.  u  <->  A  e.  u ) )
98anbi1d 461 . . . . . . . . . . . . . 14  |-  ( z  =  A  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( A  e.  u  /\  v  e.  u ) ) )
109rexbidv 2467 . . . . . . . . . . . . 13  |-  ( z  =  A  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( A  e.  u  /\  v  e.  u
) ) )
1110reueqd 2671 . . . . . . . . . . . 12  |-  ( z  =  A  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) ) )
1211rspcv 2826 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) ) )
137, 12ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )
14 riotacl 5812 . . . . . . . . . 10  |-  ( E! v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
1513, 14syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A
)
16 elrabi 2879 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  ->  (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
1716, 1eleq2s 2261 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  A  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
18 elpri 3599 . . . . . . . . 9  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
1915, 17, 183syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
20 eleq1 2229 . . . . . . . . . 10  |-  ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  { (/)
}  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  e.  A  <->  { (/) }  e.  A ) )
2115, 20syl5ibcom 154 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) }  ->  { (/) }  e.  A ) )
2221orim2d 778 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) ) )
2319, 22mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A ) )
24 acexmidlem.b . . . . . . . . . . . . . 14  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
25 pp0ex 4168 . . . . . . . . . . . . . . 15  |-  { (/) ,  { (/) } }  e.  _V
2625rabex 4126 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  e.  _V
2724, 26eqeltri 2239 . . . . . . . . . . . . 13  |-  B  e. 
_V
2827prid2 3683 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
2928, 6eleqtrri 2242 . . . . . . . . . . 11  |-  B  e.  C
30 eleq1 2229 . . . . . . . . . . . . . . 15  |-  ( z  =  B  ->  (
z  e.  u  <->  B  e.  u ) )
3130anbi1d 461 . . . . . . . . . . . . . 14  |-  ( z  =  B  ->  (
( z  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
3231rexbidv 2467 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
3332reueqd 2671 . . . . . . . . . . . 12  |-  ( z  =  B  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
3433rspcv 2826 . . . . . . . . . . 11  |-  ( B  e.  C  ->  ( A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  ->  E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
3529, 34ax-mp 5 . . . . . . . . . 10  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  E! v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )
36 riotacl 5812 . . . . . . . . . 10  |-  ( E! v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
3735, 36syl 14 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B
)
38 elrabi 2879 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) }  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e. 
{ (/) ,  { (/) } } )
3938, 24eleq2s 2261 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  B  ->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }
)
40 elpri 3599 . . . . . . . . 9  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  e.  { (/)
,  { (/) } }  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
4137, 39, 403syl 17 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
42 eleq1 2229 . . . . . . . . . 10  |-  ( (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/)  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  e.  B  <->  (/)  e.  B ) )
4337, 42syl5ibcom 154 . . . . . . . . 9  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  ->  (/)  e.  B ) )
4443orim1d 777 . . . . . . . 8  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/)  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  -> 
( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) ) )
4541, 44mpd 13 . . . . . . 7  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( (/)  e.  B  \/  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} ) )
4623, 45jca 304 . . . . . 6  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )
47 anddi 811 . . . . . 6  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  \/  { (/) }  e.  A )  /\  ( (/) 
e.  B  \/  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  <->  ( (
( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
4846, 47sylib 121 . . . . 5  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) ) )
49 simpl 108 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  (/)  e.  B )  ->  { (/) }  e.  A )
50 simpl 108 . . . . . . 7  |-  ( ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  { (/) }  e.  A )
5149, 50jaoi 706 . . . . . 6  |-  ( ( ( { (/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  { (/) }  e.  A )
5251orim2i 751 . . . . 5  |-  ( ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  ( ( {
(/) }  e.  A  /\  (/)  e.  B )  \/  ( { (/) }  e.  A  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) ) )  -> 
( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5348, 52syl 14 . . . 4  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ( ( (
iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  \/  { (/) }  e.  A ) )
5453orcomd 719 . . 3  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (
( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
55 simpr 109 . . . . 5  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  (/)  e.  B )  ->  (/) 
e.  B )
5655orim1i 750 . . . 4  |-  ( ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
5756orim2i 751 . . 3  |-  ( ( { (/) }  e.  A  \/  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  (/)  e.  B )  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )  ->  ( { (/)
}  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
5854, 57syl 14 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
59 3orass 971 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  <-> 
( { (/) }  e.  A  \/  ( (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) ) )
6058, 59sylibr 133 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    \/ w3o 967    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   E!wreu 2446   {crab 2448   _Vcvv 2726   (/)c0 3409   {csn 3576   {cpr 3577   Oncon0 4341   iota_crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iota 5153  df-riota 5798
This theorem is referenced by:  acexmidlem1  5838
  Copyright terms: Public domain W3C validator