ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbi1dv Unicode version

Theorem rexeqbi1dv 2675
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
Hypothesis
Ref Expression
raleqd.1  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexeqbi1dv  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rexeqbi1dv
StepHypRef Expression
1 rexeq 2667 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
2 raleqd.1 . . 3  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
32rexbidv 2472 . 2  |-  ( A  =  B  ->  ( E. x  e.  B  ph  <->  E. x  e.  B  ps ) )
41, 3bitrd 187 1  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1349   E.wrex 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-cleq 2164  df-clel 2167  df-nfc 2302  df-rex 2455
This theorem is referenced by:  reg2exmid  4521  reg3exmid  4565  exmidomni  7122  bj-nn0suc0  14102
  Copyright terms: Public domain W3C validator