Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reusn | Unicode version |
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
reusn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3645 | . 2 | |
2 | df-reu 2451 | . 2 | |
3 | df-rab 2453 | . . . 4 | |
4 | 3 | eqeq1i 2173 | . . 3 |
5 | 4 | exbii 1593 | . 2 |
6 | 1, 2, 5 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 weu 2014 wcel 2136 cab 2151 wreu 2446 crab 2448 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-reu 2451 df-rab 2453 df-v 2728 df-sn 3582 |
This theorem is referenced by: reuen1 6767 |
Copyright terms: Public domain | W3C validator |