ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusn Unicode version

Theorem reusn 3508
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn  |-  ( E! x  e.  A  ph  <->  E. y { x  e.  A  |  ph }  =  { y } )
Distinct variable groups:    x, y    ph, y    y, A
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 3506 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y { x  |  ( x  e.  A  /\  ph ) }  =  { y } )
2 df-reu 2366 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 df-rab 2368 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43eqeq1i 2095 . . 3  |-  ( { x  e.  A  |  ph }  =  { y }  <->  { x  |  ( x  e.  A  /\  ph ) }  =  {
y } )
54exbii 1541 . 2  |-  ( E. y { x  e.  A  |  ph }  =  { y }  <->  E. y { x  |  (
x  e.  A  /\  ph ) }  =  {
y } )
61, 2, 53bitr4i 210 1  |-  ( E! x  e.  A  ph  <->  E. y { x  e.  A  |  ph }  =  { y } )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   E!weu 1948   {cab 2074   E!wreu 2361   {crab 2363   {csn 3441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-reu 2366  df-rab 2368  df-v 2621  df-sn 3447
This theorem is referenced by:  reuen1  6498
  Copyright terms: Public domain W3C validator