ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusn Unicode version

Theorem reusn 3737
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn  |-  ( E! x  e.  A  ph  <->  E. y { x  e.  A  |  ph }  =  { y } )
Distinct variable groups:    x, y    ph, y    y, A
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 3735 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y { x  |  ( x  e.  A  /\  ph ) }  =  { y } )
2 df-reu 2515 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
3 df-rab 2517 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43eqeq1i 2237 . . 3  |-  ( { x  e.  A  |  ph }  =  { y }  <->  { x  |  ( x  e.  A  /\  ph ) }  =  {
y } )
54exbii 1651 . 2  |-  ( E. y { x  e.  A  |  ph }  =  { y }  <->  E. y { x  |  (
x  e.  A  /\  ph ) }  =  {
y } )
61, 2, 53bitr4i 212 1  |-  ( E! x  e.  A  ph  <->  E. y { x  e.  A  |  ph }  =  { y } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   {cab 2215   E!wreu 2510   {crab 2512   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-reu 2515  df-rab 2517  df-v 2801  df-sn 3672
This theorem is referenced by:  reuen1  6953
  Copyright terms: Public domain W3C validator