![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reusn | GIF version |
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
reusn | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3676 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) | |
2 | df-reu 2475 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 2477 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | eqeq1i 2197 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
5 | 4 | exbii 1616 | . 2 ⊢ (∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∃!weu 2038 ∈ wcel 2160 {cab 2175 ∃!wreu 2470 {crab 2472 {csn 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-reu 2475 df-rab 2477 df-v 2754 df-sn 3613 |
This theorem is referenced by: reuen1 6822 |
Copyright terms: Public domain | W3C validator |