ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusn GIF version

Theorem reusn 3564
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 3562 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
2 df-reu 2400 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rab 2402 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eqeq1i 2125 . . 3 ({𝑥𝐴𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
54exbii 1569 . 2 (∃𝑦{𝑥𝐴𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
61, 2, 53bitr4i 211 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1316  wex 1453  wcel 1465  ∃!weu 1977  {cab 2103  ∃!wreu 2395  {crab 2397  {csn 3497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-reu 2400  df-rab 2402  df-v 2662  df-sn 3503
This theorem is referenced by:  reuen1  6663
  Copyright terms: Public domain W3C validator