Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reusn | GIF version |
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
reusn | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3645 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) | |
2 | df-reu 2451 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 2453 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | eqeq1i 2173 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
5 | 4 | exbii 1593 | . 2 ⊢ (∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
6 | 1, 2, 5 | 3bitr4i 211 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∃!weu 2014 ∈ wcel 2136 {cab 2151 ∃!wreu 2446 {crab 2448 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-reu 2451 df-rab 2453 df-v 2728 df-sn 3582 |
This theorem is referenced by: reuen1 6767 |
Copyright terms: Public domain | W3C validator |