| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reusn | GIF version | ||
| Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusn | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3707 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) | |
| 2 | df-reu 2492 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 2494 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | eqeq1i 2214 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
| 5 | 4 | exbii 1629 | . 2 ⊢ (∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∈ wcel 2177 {cab 2192 ∃!wreu 2487 {crab 2489 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-reu 2492 df-rab 2494 df-v 2775 df-sn 3644 |
| This theorem is referenced by: reuen1 6906 |
| Copyright terms: Public domain | W3C validator |