Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc0 Unicode version

Theorem bj-nn0suc0 15442
Description: Constructive proof of a variant of nn0suc 4636. For a constructive proof of nn0suc 4636, see bj-nn0suc 15456. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc0  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0suc0
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
2 eqeq1 2200 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
32rexeqbi1dv 2703 . . 3  |-  ( y  =  A  ->  ( E. x  e.  y 
y  =  suc  x  <->  E. x  e.  A  A  =  suc  x ) )
41, 3orbi12d 794 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  y  y  =  suc  x
)  <->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) ) )
5 tru 1368 . . 3  |- T.
6 trud 1380 . . . 4  |-  ( T. 
-> T.  )
76rgenw 2549 . . 3  |-  A. z  e.  om  ( T.  -> T.  )
8 bdeq0 15359 . . . . 5  |- BOUNDED  y  =  (/)
9 bdeqsuc 15373 . . . . . 6  |- BOUNDED  y  =  suc  x
109ax-bdex 15311 . . . . 5  |- BOUNDED  E. x  e.  y  y  =  suc  x
118, 10ax-bdor 15308 . . . 4  |- BOUNDED  ( y  =  (/)  \/ 
E. x  e.  y  y  =  suc  x
)
12 nfv 1539 . . . 4  |-  F/ y T.
13 orc 713 . . . . 5  |-  ( y  =  (/)  ->  ( y  =  (/)  \/  E. x  e.  y  y  =  suc  x ) )
1413a1d 22 . . . 4  |-  ( y  =  (/)  ->  ( T. 
->  ( y  =  (/)  \/ 
E. x  e.  y  y  =  suc  x
) ) )
15 trud 1380 . . . . 5  |-  ( -.  ( y  =  z  ->  -.  ( y  =  (/)  \/  E. x  e.  y  y  =  suc  x ) )  -> T.  )
1615expi 639 . . . 4  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  y  y  =  suc  x
)  -> T.  )
)
17 vex 2763 . . . . . . . . 9  |-  z  e. 
_V
1817sucid 4448 . . . . . . . 8  |-  z  e. 
suc  z
19 eleq2 2257 . . . . . . . 8  |-  ( y  =  suc  z  -> 
( z  e.  y  <-> 
z  e.  suc  z
) )
2018, 19mpbiri 168 . . . . . . 7  |-  ( y  =  suc  z  -> 
z  e.  y )
21 suceq 4433 . . . . . . . . 9  |-  ( x  =  z  ->  suc  x  =  suc  z )
2221eqeq2d 2205 . . . . . . . 8  |-  ( x  =  z  ->  (
y  =  suc  x  <->  y  =  suc  z ) )
2322rspcev 2864 . . . . . . 7  |-  ( ( z  e.  y  /\  y  =  suc  z )  ->  E. x  e.  y  y  =  suc  x
)
2420, 23mpancom 422 . . . . . 6  |-  ( y  =  suc  z  ->  E. x  e.  y 
y  =  suc  x
)
2524olcd 735 . . . . 5  |-  ( y  =  suc  z  -> 
( y  =  (/)  \/ 
E. x  e.  y  y  =  suc  x
) )
2625a1d 22 . . . 4  |-  ( y  =  suc  z  -> 
( T.  ->  (
y  =  (/)  \/  E. x  e.  y  y  =  suc  x ) ) )
2711, 12, 12, 12, 14, 16, 26bj-bdfindis 15439 . . 3  |-  ( ( T.  /\  A. z  e.  om  ( T.  -> T.  ) )  ->  A. y  e.  om  ( y  =  (/)  \/  E. x  e.  y  y  =  suc  x ) )
285, 7, 27mp2an 426 . 2  |-  A. y  e.  om  ( y  =  (/)  \/  E. x  e.  y  y  =  suc  x )
294, 28vtoclri 2835 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709    = wceq 1364   T. wtru 1365    e. wcel 2164   A.wral 2472   E.wrex 2473   (/)c0 3446   suc csuc 4396   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdim 15306  ax-bdan 15307  ax-bdor 15308  ax-bdn 15309  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by:  bj-nn0suc  15456
  Copyright terms: Public domain W3C validator