Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc0 | Unicode version |
Description: Constructive proof of a variant of nn0suc 4581. For a constructive proof of nn0suc 4581, see bj-nn0suc 13846. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nn0suc0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eqeq1 2172 | . . . 4 | |
3 | 2 | rexeqbi1dv 2670 | . . 3 |
4 | 1, 3 | orbi12d 783 | . 2 |
5 | tru 1347 | . . 3 | |
6 | a1tru 1359 | . . . 4 | |
7 | 6 | rgenw 2521 | . . 3 |
8 | bdeq0 13749 | . . . . 5 BOUNDED | |
9 | bdeqsuc 13763 | . . . . . 6 BOUNDED | |
10 | 9 | ax-bdex 13701 | . . . . 5 BOUNDED |
11 | 8, 10 | ax-bdor 13698 | . . . 4 BOUNDED |
12 | nfv 1516 | . . . 4 | |
13 | orc 702 | . . . . 5 | |
14 | 13 | a1d 22 | . . . 4 |
15 | a1tru 1359 | . . . . 5 | |
16 | 15 | expi 628 | . . . 4 |
17 | vex 2729 | . . . . . . . . 9 | |
18 | 17 | sucid 4395 | . . . . . . . 8 |
19 | eleq2 2230 | . . . . . . . 8 | |
20 | 18, 19 | mpbiri 167 | . . . . . . 7 |
21 | suceq 4380 | . . . . . . . . 9 | |
22 | 21 | eqeq2d 2177 | . . . . . . . 8 |
23 | 22 | rspcev 2830 | . . . . . . 7 |
24 | 20, 23 | mpancom 419 | . . . . . 6 |
25 | 24 | olcd 724 | . . . . 5 |
26 | 25 | a1d 22 | . . . 4 |
27 | 11, 12, 12, 12, 14, 16, 26 | bj-bdfindis 13829 | . . 3 |
28 | 5, 7, 27 | mp2an 423 | . 2 |
29 | 4, 28 | vtoclri 2801 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 wceq 1343 wtru 1344 wcel 2136 wral 2444 wrex 2445 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdim 13696 ax-bdan 13697 ax-bdor 13698 ax-bdn 13699 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-nn0suc 13846 |
Copyright terms: Public domain | W3C validator |