Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc0 | Unicode version |
Description: Constructive proof of a variant of nn0suc 4588. For a constructive proof of nn0suc 4588, see bj-nn0suc 13999. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nn0suc0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | eqeq1 2177 | . . . 4 | |
3 | 2 | rexeqbi1dv 2674 | . . 3 |
4 | 1, 3 | orbi12d 788 | . 2 |
5 | tru 1352 | . . 3 | |
6 | a1tru 1364 | . . . 4 | |
7 | 6 | rgenw 2525 | . . 3 |
8 | bdeq0 13902 | . . . . 5 BOUNDED | |
9 | bdeqsuc 13916 | . . . . . 6 BOUNDED | |
10 | 9 | ax-bdex 13854 | . . . . 5 BOUNDED |
11 | 8, 10 | ax-bdor 13851 | . . . 4 BOUNDED |
12 | nfv 1521 | . . . 4 | |
13 | orc 707 | . . . . 5 | |
14 | 13 | a1d 22 | . . . 4 |
15 | a1tru 1364 | . . . . 5 | |
16 | 15 | expi 633 | . . . 4 |
17 | vex 2733 | . . . . . . . . 9 | |
18 | 17 | sucid 4402 | . . . . . . . 8 |
19 | eleq2 2234 | . . . . . . . 8 | |
20 | 18, 19 | mpbiri 167 | . . . . . . 7 |
21 | suceq 4387 | . . . . . . . . 9 | |
22 | 21 | eqeq2d 2182 | . . . . . . . 8 |
23 | 22 | rspcev 2834 | . . . . . . 7 |
24 | 20, 23 | mpancom 420 | . . . . . 6 |
25 | 24 | olcd 729 | . . . . 5 |
26 | 25 | a1d 22 | . . . 4 |
27 | 11, 12, 12, 12, 14, 16, 26 | bj-bdfindis 13982 | . . 3 |
28 | 5, 7, 27 | mp2an 424 | . 2 |
29 | 4, 28 | vtoclri 2805 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 703 wceq 1348 wtru 1349 wcel 2141 wral 2448 wrex 2449 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdim 13849 ax-bdan 13850 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-nn0suc 13999 |
Copyright terms: Public domain | W3C validator |