| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg2exmid | Unicode version | ||
| Description: If any inhabited set has
a minimal element (when expressed by |
| Ref | Expression |
|---|---|
| reg2exmid.1 |
|
| Ref | Expression |
|---|---|
| reg2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . . 4
| |
| 2 | 1 | regexmidlemm 4584 |
. . 3
|
| 3 | reg2exmid.1 |
. . . 4
| |
| 4 | pp0ex 4237 |
. . . . . 6
| |
| 5 | 4 | rabex 4192 |
. . . . 5
|
| 6 | eleq2 2270 |
. . . . . . 7
| |
| 7 | 6 | exbidv 1849 |
. . . . . 6
|
| 8 | raleq 2703 |
. . . . . . 7
| |
| 9 | 8 | rexeqbi1dv 2716 |
. . . . . 6
|
| 10 | 7, 9 | imbi12d 234 |
. . . . 5
|
| 11 | 5, 10 | spcv 2868 |
. . . 4
|
| 12 | 3, 11 | ax-mp 5 |
. . 3
|
| 13 | 2, 12 | ax-mp 5 |
. 2
|
| 14 | 1 | reg2exmidlema 4586 |
. 2
|
| 15 | 13, 14 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |