ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmid Unicode version

Theorem reg2exmid 4513
Description: If any inhabited set has a minimal element (when expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
reg2exmid.1  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
Assertion
Ref Expression
reg2exmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, w, z    ph, x, z, y

Proof of Theorem reg2exmid
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  =  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }
21regexmidlemm 4509 . . 3  |-  E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }
3 reg2exmid.1 . . . 4  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
4 pp0ex 4168 . . . . . 6  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4126 . . . . 5  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  e.  _V
6 eleq2 2230 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( w  e.  z  <->  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) )
76exbidv 1813 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. w  w  e.  z  <->  E. w  w  e. 
{ u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } ) )
8 raleq 2661 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( A. y  e.  z  x  C_  y  <->  A. y  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } x  C_  y ) )
98rexeqbi1dv 2670 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. x  e.  z 
A. y  e.  z  x  C_  y  <->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
107, 9imbi12d 233 . . . . 5  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)  <->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) ) )
115, 10spcv 2820 . . . 4  |-  ( A. z ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y )  ->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
123, 11ax-mp 5 . . 3  |-  ( E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y )
132, 12ax-mp 5 . 2  |-  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y
141reg2exmidlema 4511 . 2  |-  ( E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y  ->  ( ph  \/  -.  ph ) )
1513, 14ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   (/)c0 3409   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator