ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmid Unicode version

Theorem reg2exmid 4520
Description: If any inhabited set has a minimal element (when expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
reg2exmid.1  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
Assertion
Ref Expression
reg2exmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, w, z    ph, x, z, y

Proof of Theorem reg2exmid
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . 4  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  =  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }
21regexmidlemm 4516 . . 3  |-  E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }
3 reg2exmid.1 . . . 4  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
4 pp0ex 4175 . . . . . 6  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4133 . . . . 5  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  e.  _V
6 eleq2 2234 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( w  e.  z  <->  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) )
76exbidv 1818 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. w  w  e.  z  <->  E. w  w  e. 
{ u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } ) )
8 raleq 2665 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( A. y  e.  z  x  C_  y  <->  A. y  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } x  C_  y ) )
98rexeqbi1dv 2674 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. x  e.  z 
A. y  e.  z  x  C_  y  <->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
107, 9imbi12d 233 . . . . 5  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)  <->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) ) )
115, 10spcv 2824 . . . 4  |-  ( A. z ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y )  ->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
123, 11ax-mp 5 . . 3  |-  ( E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y )
132, 12ax-mp 5 . 2  |-  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y
141reg2exmidlema 4518 . 2  |-  ( E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y  ->  ( ph  \/  -.  ph ) )
1513, 14ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   (/)c0 3414   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator