ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmid Unicode version

Theorem reg2exmid 4352
Description: If any inhabited set has a minimal element (when expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
reg2exmid.1  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
Assertion
Ref Expression
reg2exmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, w, z    ph, x, z, y

Proof of Theorem reg2exmid
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . . . 4  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  =  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }
21regexmidlemm 4348 . . 3  |-  E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }
3 reg2exmid.1 . . . 4  |-  A. z
( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
4 pp0ex 4024 . . . . . 6  |-  { (/) ,  { (/) } }  e.  _V
54rabex 3983 . . . . 5  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  e.  _V
6 eleq2 2151 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( w  e.  z  <->  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) )
76exbidv 1753 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. w  w  e.  z  <->  E. w  w  e. 
{ u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } ) )
8 raleq 2562 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( A. y  e.  z  x  C_  y  <->  A. y  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } x  C_  y ) )
98rexeqbi1dv 2571 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. x  e.  z 
A. y  e.  z  x  C_  y  <->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
107, 9imbi12d 232 . . . . 5  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)  <->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) ) )
115, 10spcv 2712 . . . 4  |-  ( A. z ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y )  ->  ( E. w  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
123, 11ax-mp 7 . . 3  |-  ( E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y )
132, 12ax-mp 7 . 2  |-  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y
141reg2exmidlema 4350 . 2  |-  ( E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y  ->  ( ph  \/  -.  ph ) )
1513, 14ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   A.wral 2359   E.wrex 2360   {crab 2363    C_ wss 2999   (/)c0 3286   {csn 3446   {cpr 3447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator