ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbi1dv GIF version

Theorem rexeqbi1dv 2714
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
Hypothesis
Ref Expression
raleqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rexeqbi1dv (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqbi1dv
StepHypRef Expression
1 rexeq 2702 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 raleqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32rexbidv 2506 . 2 (𝐴 = 𝐵 → (∃𝑥𝐵 𝜑 ↔ ∃𝑥𝐵 𝜓))
41, 3bitrd 188 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489
This theorem is referenced by:  reg2exmid  4583  reg3exmid  4627  exmidomni  7243  bj-nn0suc0  15819
  Copyright terms: Public domain W3C validator