| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexeqbi1dv | GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeq 2694 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexbidv 2498 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | 
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 | 
| This theorem is referenced by: reg2exmid 4572 reg3exmid 4616 exmidomni 7208 bj-nn0suc0 15596 | 
| Copyright terms: Public domain | W3C validator |