Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reg3exmid | Unicode version |
Description: If any inhabited set satisfying df-wetr 4312 for has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.) |
Ref | Expression |
---|---|
reg3exmid.1 |
Ref | Expression |
---|---|
reg3exmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | 1 | regexmidlemm 4509 | . 2 |
3 | 1 | reg3exmidlemwe 4556 | . . 3 |
4 | pp0ex 4168 | . . . . 5 | |
5 | 4 | rabex 4126 | . . . 4 |
6 | weeq2 4335 | . . . . . 6 | |
7 | eleq2 2230 | . . . . . . 7 | |
8 | 7 | exbidv 1813 | . . . . . 6 |
9 | 6, 8 | anbi12d 465 | . . . . 5 |
10 | raleq 2661 | . . . . . 6 | |
11 | 10 | rexeqbi1dv 2670 | . . . . 5 |
12 | 9, 11 | imbi12d 233 | . . . 4 |
13 | reg3exmid.1 | . . . 4 | |
14 | 5, 12, 13 | vtocl 2780 | . . 3 |
15 | 3, 14 | mpan 421 | . 2 |
16 | 1 | reg2exmidlema 4511 | . 2 |
17 | 2, 15, 16 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 c0 3409 csn 3576 cpr 3577 cep 4265 wwe 4308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-eprel 4267 df-frfor 4309 df-frind 4310 df-wetr 4312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |