ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmid Unicode version

Theorem reg3exmid 4616
Description: If any inhabited set satisfying df-wetr 4369 for  _E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmid.1  |-  ( (  _E  We  z  /\  E. w  w  e.  z )  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
Assertion
Ref Expression
reg3exmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, w, z    ph, x, y, z

Proof of Theorem reg3exmid
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  =  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }
21regexmidlemm 4568 . 2  |-  E. w  w  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }
31reg3exmidlemwe 4615 . . 3  |-  _E  We  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }
4 pp0ex 4222 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4177 . . . 4  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  e.  _V
6 weeq2 4392 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  (  _E  We  z  <->  _E  We  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) )
7 eleq2 2260 . . . . . . 7  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( w  e.  z  <->  w  e.  { u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) )
87exbidv 1839 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. w  w  e.  z  <->  E. w  w  e. 
{ u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } ) )
96, 8anbi12d 473 . . . . 5  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( (  _E  We  z  /\  E. w  w  e.  z )  <->  (  _E  We  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) }  /\  E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } ) ) )
10 raleq 2693 . . . . . 6  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( A. y  e.  z  x  C_  y  <->  A. y  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } x  C_  y ) )
1110rexeqbi1dv 2706 . . . . 5  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( E. x  e.  z 
A. y  e.  z  x  C_  y  <->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) )
129, 11imbi12d 234 . . . 4  |-  ( z  =  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  ->  ( ( (  _E  We  z  /\  E. w  w  e.  z )  ->  E. x  e.  z  A. y  e.  z  x  C_  y )  <->  ( (  _E  We  { u  e. 
{ (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  /\  E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } )  ->  E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y ) ) )
13 reg3exmid.1 . . . 4  |-  ( (  _E  We  z  /\  E. w  w  e.  z )  ->  E. x  e.  z  A. y  e.  z  x  C_  y
)
145, 12, 13vtocl 2818 . . 3  |-  ( (  _E  We  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) }  /\  E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) } )  ->  E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y )
153, 14mpan 424 . 2  |-  ( E. w  w  e.  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  ( u  =  (/)  /\  ph )
) }  ->  E. x  e.  { u  e.  { (/)
,  { (/) } }  |  ( u  =  { (/) }  \/  (
u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y )
161reg2exmidlema 4570 . 2  |-  ( E. x  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } A. y  e.  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  ( u  =  (/)  /\  ph ) ) } x  C_  y  ->  ( ph  \/  -.  ph ) )
172, 15, 16mp2b 8 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   (/)c0 3450   {csn 3622   {cpr 3623    _E cep 4322    We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-frfor 4366  df-frind 4367  df-wetr 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator