| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg3exmid | Unicode version | ||
| Description: If any inhabited set
satisfying df-wetr 4394 for |
| Ref | Expression |
|---|---|
| reg3exmid.1 |
|
| Ref | Expression |
|---|---|
| reg3exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . 3
| |
| 2 | 1 | regexmidlemm 4593 |
. 2
|
| 3 | 1 | reg3exmidlemwe 4640 |
. . 3
|
| 4 | pp0ex 4244 |
. . . . 5
| |
| 5 | 4 | rabex 4199 |
. . . 4
|
| 6 | weeq2 4417 |
. . . . . 6
| |
| 7 | eleq2 2270 |
. . . . . . 7
| |
| 8 | 7 | exbidv 1849 |
. . . . . 6
|
| 9 | 6, 8 | anbi12d 473 |
. . . . 5
|
| 10 | raleq 2703 |
. . . . . 6
| |
| 11 | 10 | rexeqbi1dv 2716 |
. . . . 5
|
| 12 | 9, 11 | imbi12d 234 |
. . . 4
|
| 13 | reg3exmid.1 |
. . . 4
| |
| 14 | 5, 12, 13 | vtocl 2829 |
. . 3
|
| 15 | 3, 14 | mpan 424 |
. 2
|
| 16 | 1 | reg2exmidlema 4595 |
. 2
|
| 17 | 2, 15, 16 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-eprel 4349 df-frfor 4391 df-frind 4392 df-wetr 4394 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |