| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reg3exmid | Unicode version | ||
| Description: If any inhabited set
satisfying df-wetr 4424 for |
| Ref | Expression |
|---|---|
| reg3exmid.1 |
|
| Ref | Expression |
|---|---|
| reg3exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | 1 | regexmidlemm 4623 |
. 2
|
| 3 | 1 | reg3exmidlemwe 4670 |
. . 3
|
| 4 | pp0ex 4272 |
. . . . 5
| |
| 5 | 4 | rabex 4227 |
. . . 4
|
| 6 | weeq2 4447 |
. . . . . 6
| |
| 7 | eleq2 2293 |
. . . . . . 7
| |
| 8 | 7 | exbidv 1871 |
. . . . . 6
|
| 9 | 6, 8 | anbi12d 473 |
. . . . 5
|
| 10 | raleq 2728 |
. . . . . 6
| |
| 11 | 10 | rexeqbi1dv 2741 |
. . . . 5
|
| 12 | 9, 11 | imbi12d 234 |
. . . 4
|
| 13 | reg3exmid.1 |
. . . 4
| |
| 14 | 5, 12, 13 | vtocl 2855 |
. . 3
|
| 15 | 3, 14 | mpan 424 |
. 2
|
| 16 | 1 | reg2exmidlema 4625 |
. 2
|
| 17 | 2, 15, 16 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-eprel 4379 df-frfor 4421 df-frind 4422 df-wetr 4424 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |