Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0ct | Unicode version |
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
0ct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o 6419 | . . . . 5 | |
2 | djurcl 7029 | . . . . 5 inr ⊔ | |
3 | 1, 2 | ax-mp 5 | . . . 4 inr ⊔ |
4 | 3 | fconst6 5397 | . . 3 inr ⊔ |
5 | peano1 4578 | . . . . 5 | |
6 | rex0 3432 | . . . . . . . . 9 inl | |
7 | djur 7046 | . . . . . . . . . . 11 ⊔ inl inr | |
8 | 7 | biimpi 119 | . . . . . . . . . 10 ⊔ inl inr |
9 | 8 | ord 719 | . . . . . . . . 9 ⊔ inl inr |
10 | 6, 9 | mpi 15 | . . . . . . . 8 ⊔ inr |
11 | df1o2 6408 | . . . . . . . . 9 | |
12 | 11 | rexeqi 2670 | . . . . . . . 8 inr inr |
13 | 10, 12 | sylib 121 | . . . . . . 7 ⊔ inr |
14 | 0ex 4116 | . . . . . . . 8 | |
15 | fveq2 5496 | . . . . . . . . 9 inr inr | |
16 | 15 | eqeq2d 2182 | . . . . . . . 8 inr inr |
17 | 14, 16 | rexsn 3627 | . . . . . . 7 inr inr |
18 | 13, 17 | sylib 121 | . . . . . 6 ⊔ inr |
19 | 3 | elexi 2742 | . . . . . . . 8 inr |
20 | 19 | fvconst2 5712 | . . . . . . 7 inr inr |
21 | 5, 20 | ax-mp 5 | . . . . . 6 inr inr |
22 | 18, 21 | eqtr4di 2221 | . . . . 5 ⊔ inr |
23 | fveq2 5496 | . . . . . 6 inr inr | |
24 | 23 | rspceeqv 2852 | . . . . 5 inr inr |
25 | 5, 22, 24 | sylancr 412 | . . . 4 ⊔ inr |
26 | 25 | rgen 2523 | . . 3 ⊔ inr |
27 | dffo3 5643 | . . 3 inr ⊔ inr ⊔ ⊔ inr | |
28 | 4, 26, 27 | mpbir2an 937 | . 2 inr ⊔ |
29 | omex 4577 | . . . 4 | |
30 | 19 | snex 4171 | . . . 4 inr |
31 | 29, 30 | xpex 4726 | . . 3 inr |
32 | foeq1 5416 | . . 3 inr ⊔ inr ⊔ | |
33 | 31, 32 | spcev 2825 | . 2 inr ⊔ ⊔ |
34 | 28, 33 | ax-mp 5 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wo 703 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 c0 3414 csn 3583 com 4574 cxp 4609 wf 5194 wfo 5196 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: enumct 7092 |
Copyright terms: Public domain | W3C validator |