ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct Unicode version

Theorem 0ct 7108
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct  |-  E. f 
f : om -onto-> ( (/) 1o )

Proof of Theorem 0ct
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6443 . . . . 5  |-  (/)  e.  1o
2 djurcl 7053 . . . . 5  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( (/) 1o ) )
31, 2ax-mp 5 . . . 4  |-  (inr `  (/) )  e.  ( (/) 1o )
43fconst6 5417 . . 3  |-  ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )
5 peano1 4595 . . . . 5  |-  (/)  e.  om
6 rex0 3442 . . . . . . . . 9  |-  -.  E. w  e.  (/)  y  =  (inl `  w )
7 djur 7070 . . . . . . . . . . 11  |-  ( y  e.  ( (/) 1o )  <-> 
( E. w  e.  (/)  y  =  (inl `  w )  \/  E. w  e.  1o  y  =  (inr `  w )
) )
87biimpi 120 . . . . . . . . . 10  |-  ( y  e.  ( (/) 1o )  ->  ( E. w  e.  (/)  y  =  (inl
`  w )  \/ 
E. w  e.  1o  y  =  (inr `  w
) ) )
98ord 724 . . . . . . . . 9  |-  ( y  e.  ( (/) 1o )  ->  ( -.  E. w  e.  (/)  y  =  (inl `  w )  ->  E. w  e.  1o  y  =  (inr `  w
) ) )
106, 9mpi 15 . . . . . . . 8  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  1o  y  =  (inr `  w
) )
11 df1o2 6432 . . . . . . . . 9  |-  1o  =  { (/) }
1211rexeqi 2678 . . . . . . . 8  |-  ( E. w  e.  1o  y  =  (inr `  w )  <->  E. w  e.  { (/) } y  =  (inr `  w ) )
1310, 12sylib 122 . . . . . . 7  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  { (/)
} y  =  (inr
`  w ) )
14 0ex 4132 . . . . . . . 8  |-  (/)  e.  _V
15 fveq2 5517 . . . . . . . . 9  |-  ( w  =  (/)  ->  (inr `  w )  =  (inr
`  (/) ) )
1615eqeq2d 2189 . . . . . . . 8  |-  ( w  =  (/)  ->  ( y  =  (inr `  w
)  <->  y  =  (inr
`  (/) ) ) )
1714, 16rexsn 3638 . . . . . . 7  |-  ( E. w  e.  { (/) } y  =  (inr `  w )  <->  y  =  (inr `  (/) ) )
1813, 17sylib 122 . . . . . 6  |-  ( y  e.  ( (/) 1o )  ->  y  =  (inr
`  (/) ) )
193elexi 2751 . . . . . . . 8  |-  (inr `  (/) )  e.  _V
2019fvconst2 5734 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( om  X.  { (inr `  (/) ) } ) `  (/) )  =  (inr `  (/) ) )
215, 20ax-mp 5 . . . . . 6  |-  ( ( om  X.  { (inr
`  (/) ) } ) `
 (/) )  =  (inr
`  (/) )
2218, 21eqtr4di 2228 . . . . 5  |-  ( y  e.  ( (/) 1o )  ->  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  (/) ) )
23 fveq2 5517 . . . . . 6  |-  ( z  =  (/)  ->  ( ( om  X.  { (inr
`  (/) ) } ) `
 z )  =  ( ( om  X.  { (inr `  (/) ) } ) `  (/) ) )
2423rspceeqv 2861 . . . . 5  |-  ( (
(/)  e.  om  /\  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  (/) ) )  ->  E. z  e.  om  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  z ) )
255, 22, 24sylancr 414 . . . 4  |-  ( y  e.  ( (/) 1o )  ->  E. z  e.  om  y  =  ( ( om  X.  { (inr `  (/) ) } ) `  z ) )
2625rgen 2530 . . 3  |-  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z )
27 dffo3 5665 . . 3  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  <->  ( ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )  /\  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z ) ) )
284, 26, 27mpbir2an 942 . 2  |-  ( om 
X.  { (inr `  (/) ) } ) : om -onto-> ( (/) 1o )
29 omex 4594 . . . 4  |-  om  e.  _V
3019snex 4187 . . . 4  |-  { (inr
`  (/) ) }  e.  _V
3129, 30xpex 4743 . . 3  |-  ( om 
X.  { (inr `  (/) ) } )  e. 
_V
32 foeq1 5436 . . 3  |-  ( f  =  ( om  X.  { (inr `  (/) ) } )  ->  ( f : om -onto-> ( (/) 1o )  <-> 
( om  X.  {
(inr `  (/) ) } ) : om -onto-> ( (/) 1o ) ) )
3331, 32spcev 2834 . 2  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  ->  E. f 
f : om -onto-> ( (/) 1o ) )
3428, 33ax-mp 5 1  |-  E. f 
f : om -onto-> ( (/) 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 708    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   (/)c0 3424   {csn 3594   omcom 4591    X. cxp 4626   -->wf 5214   -onto->wfo 5216   ` cfv 5218   1oc1o 6412   ⊔ cdju 7038  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  enumct  7116
  Copyright terms: Public domain W3C validator