ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct Unicode version

Theorem 0ct 7182
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct  |-  E. f 
f : om -onto-> ( (/) 1o )

Proof of Theorem 0ct
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6507 . . . . 5  |-  (/)  e.  1o
2 djurcl 7127 . . . . 5  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( (/) 1o ) )
31, 2ax-mp 5 . . . 4  |-  (inr `  (/) )  e.  ( (/) 1o )
43fconst6 5460 . . 3  |-  ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )
5 peano1 4631 . . . . 5  |-  (/)  e.  om
6 rex0 3469 . . . . . . . . 9  |-  -.  E. w  e.  (/)  y  =  (inl `  w )
7 djur 7144 . . . . . . . . . . 11  |-  ( y  e.  ( (/) 1o )  <-> 
( E. w  e.  (/)  y  =  (inl `  w )  \/  E. w  e.  1o  y  =  (inr `  w )
) )
87biimpi 120 . . . . . . . . . 10  |-  ( y  e.  ( (/) 1o )  ->  ( E. w  e.  (/)  y  =  (inl
`  w )  \/ 
E. w  e.  1o  y  =  (inr `  w
) ) )
98ord 725 . . . . . . . . 9  |-  ( y  e.  ( (/) 1o )  ->  ( -.  E. w  e.  (/)  y  =  (inl `  w )  ->  E. w  e.  1o  y  =  (inr `  w
) ) )
106, 9mpi 15 . . . . . . . 8  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  1o  y  =  (inr `  w
) )
11 df1o2 6496 . . . . . . . . 9  |-  1o  =  { (/) }
1211rexeqi 2698 . . . . . . . 8  |-  ( E. w  e.  1o  y  =  (inr `  w )  <->  E. w  e.  { (/) } y  =  (inr `  w ) )
1310, 12sylib 122 . . . . . . 7  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  { (/)
} y  =  (inr
`  w ) )
14 0ex 4161 . . . . . . . 8  |-  (/)  e.  _V
15 fveq2 5561 . . . . . . . . 9  |-  ( w  =  (/)  ->  (inr `  w )  =  (inr
`  (/) ) )
1615eqeq2d 2208 . . . . . . . 8  |-  ( w  =  (/)  ->  ( y  =  (inr `  w
)  <->  y  =  (inr
`  (/) ) ) )
1714, 16rexsn 3667 . . . . . . 7  |-  ( E. w  e.  { (/) } y  =  (inr `  w )  <->  y  =  (inr `  (/) ) )
1813, 17sylib 122 . . . . . 6  |-  ( y  e.  ( (/) 1o )  ->  y  =  (inr
`  (/) ) )
193elexi 2775 . . . . . . . 8  |-  (inr `  (/) )  e.  _V
2019fvconst2 5781 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( om  X.  { (inr `  (/) ) } ) `  (/) )  =  (inr `  (/) ) )
215, 20ax-mp 5 . . . . . 6  |-  ( ( om  X.  { (inr
`  (/) ) } ) `
 (/) )  =  (inr
`  (/) )
2218, 21eqtr4di 2247 . . . . 5  |-  ( y  e.  ( (/) 1o )  ->  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  (/) ) )
23 fveq2 5561 . . . . . 6  |-  ( z  =  (/)  ->  ( ( om  X.  { (inr
`  (/) ) } ) `
 z )  =  ( ( om  X.  { (inr `  (/) ) } ) `  (/) ) )
2423rspceeqv 2886 . . . . 5  |-  ( (
(/)  e.  om  /\  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  (/) ) )  ->  E. z  e.  om  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  z ) )
255, 22, 24sylancr 414 . . . 4  |-  ( y  e.  ( (/) 1o )  ->  E. z  e.  om  y  =  ( ( om  X.  { (inr `  (/) ) } ) `  z ) )
2625rgen 2550 . . 3  |-  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z )
27 dffo3 5712 . . 3  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  <->  ( ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )  /\  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z ) ) )
284, 26, 27mpbir2an 944 . 2  |-  ( om 
X.  { (inr `  (/) ) } ) : om -onto-> ( (/) 1o )
29 omex 4630 . . . 4  |-  om  e.  _V
3019snex 4219 . . . 4  |-  { (inr
`  (/) ) }  e.  _V
3129, 30xpex 4779 . . 3  |-  ( om 
X.  { (inr `  (/) ) } )  e. 
_V
32 foeq1 5479 . . 3  |-  ( f  =  ( om  X.  { (inr `  (/) ) } )  ->  ( f : om -onto-> ( (/) 1o )  <-> 
( om  X.  {
(inr `  (/) ) } ) : om -onto-> ( (/) 1o ) ) )
3331, 32spcev 2859 . 2  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  ->  E. f 
f : om -onto-> ( (/) 1o ) )
3428, 33ax-mp 5 1  |-  E. f 
f : om -onto-> ( (/) 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   (/)c0 3451   {csn 3623   omcom 4627    X. cxp 4662   -->wf 5255   -onto->wfo 5257   ` cfv 5259   1oc1o 6476   ⊔ cdju 7112  inlcinl 7120  inrcinr 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-dju 7113  df-inl 7122  df-inr 7123
This theorem is referenced by:  enumct  7190
  Copyright terms: Public domain W3C validator