Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0ct | Unicode version |
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
0ct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o 6408 | . . . . 5 | |
2 | djurcl 7017 | . . . . 5 inr ⊔ | |
3 | 1, 2 | ax-mp 5 | . . . 4 inr ⊔ |
4 | 3 | fconst6 5387 | . . 3 inr ⊔ |
5 | peano1 4571 | . . . . 5 | |
6 | rex0 3426 | . . . . . . . . 9 inl | |
7 | djur 7034 | . . . . . . . . . . 11 ⊔ inl inr | |
8 | 7 | biimpi 119 | . . . . . . . . . 10 ⊔ inl inr |
9 | 8 | ord 714 | . . . . . . . . 9 ⊔ inl inr |
10 | 6, 9 | mpi 15 | . . . . . . . 8 ⊔ inr |
11 | df1o2 6397 | . . . . . . . . 9 | |
12 | 11 | rexeqi 2666 | . . . . . . . 8 inr inr |
13 | 10, 12 | sylib 121 | . . . . . . 7 ⊔ inr |
14 | 0ex 4109 | . . . . . . . 8 | |
15 | fveq2 5486 | . . . . . . . . 9 inr inr | |
16 | 15 | eqeq2d 2177 | . . . . . . . 8 inr inr |
17 | 14, 16 | rexsn 3620 | . . . . . . 7 inr inr |
18 | 13, 17 | sylib 121 | . . . . . 6 ⊔ inr |
19 | 3 | elexi 2738 | . . . . . . . 8 inr |
20 | 19 | fvconst2 5701 | . . . . . . 7 inr inr |
21 | 5, 20 | ax-mp 5 | . . . . . 6 inr inr |
22 | 18, 21 | eqtr4di 2217 | . . . . 5 ⊔ inr |
23 | fveq2 5486 | . . . . . 6 inr inr | |
24 | 23 | rspceeqv 2848 | . . . . 5 inr inr |
25 | 5, 22, 24 | sylancr 411 | . . . 4 ⊔ inr |
26 | 25 | rgen 2519 | . . 3 ⊔ inr |
27 | dffo3 5632 | . . 3 inr ⊔ inr ⊔ ⊔ inr | |
28 | 4, 26, 27 | mpbir2an 932 | . 2 inr ⊔ |
29 | omex 4570 | . . . 4 | |
30 | 19 | snex 4164 | . . . 4 inr |
31 | 29, 30 | xpex 4719 | . . 3 inr |
32 | foeq1 5406 | . . 3 inr ⊔ inr ⊔ | |
33 | 31, 32 | spcev 2821 | . 2 inr ⊔ ⊔ |
34 | 28, 33 | ax-mp 5 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wo 698 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 c0 3409 csn 3576 com 4567 cxp 4602 wf 5184 wfo 5186 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: enumct 7080 |
Copyright terms: Public domain | W3C validator |