| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0ct | Unicode version | ||
| Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| 0ct | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0lt1o 6498 | 
. . . . 5
 | |
| 2 | djurcl 7118 | 
. . . . 5
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . . 4
 | 
| 4 | 3 | fconst6 5457 | 
. . 3
 | 
| 5 | peano1 4630 | 
. . . . 5
 | |
| 6 | rex0 3468 | 
. . . . . . . . 9
 | |
| 7 | djur 7135 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | biimpi 120 | 
. . . . . . . . . 10
 | 
| 9 | 8 | ord 725 | 
. . . . . . . . 9
 | 
| 10 | 6, 9 | mpi 15 | 
. . . . . . . 8
 | 
| 11 | df1o2 6487 | 
. . . . . . . . 9
 | |
| 12 | 11 | rexeqi 2698 | 
. . . . . . . 8
 | 
| 13 | 10, 12 | sylib 122 | 
. . . . . . 7
 | 
| 14 | 0ex 4160 | 
. . . . . . . 8
 | |
| 15 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 16 | 15 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 17 | 14, 16 | rexsn 3666 | 
. . . . . . 7
 | 
| 18 | 13, 17 | sylib 122 | 
. . . . . 6
 | 
| 19 | 3 | elexi 2775 | 
. . . . . . . 8
 | 
| 20 | 19 | fvconst2 5778 | 
. . . . . . 7
 | 
| 21 | 5, 20 | ax-mp 5 | 
. . . . . 6
 | 
| 22 | 18, 21 | eqtr4di 2247 | 
. . . . 5
 | 
| 23 | fveq2 5558 | 
. . . . . 6
 | |
| 24 | 23 | rspceeqv 2886 | 
. . . . 5
 | 
| 25 | 5, 22, 24 | sylancr 414 | 
. . . 4
 | 
| 26 | 25 | rgen 2550 | 
. . 3
 | 
| 27 | dffo3 5709 | 
. . 3
 | |
| 28 | 4, 26, 27 | mpbir2an 944 | 
. 2
 | 
| 29 | omex 4629 | 
. . . 4
 | |
| 30 | 19 | snex 4218 | 
. . . 4
 | 
| 31 | 29, 30 | xpex 4778 | 
. . 3
 | 
| 32 | foeq1 5476 | 
. . 3
 | |
| 33 | 31, 32 | spcev 2859 | 
. 2
 | 
| 34 | 28, 33 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 | 
| This theorem is referenced by: enumct 7181 | 
| Copyright terms: Public domain | W3C validator |