| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ct | Unicode version | ||
| Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| 0ct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1o 6586 |
. . . . 5
| |
| 2 | djurcl 7219 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 3 | fconst6 5525 |
. . 3
|
| 5 | peano1 4686 |
. . . . 5
| |
| 6 | rex0 3509 |
. . . . . . . . 9
| |
| 7 | djur 7236 |
. . . . . . . . . . 11
| |
| 8 | 7 | biimpi 120 |
. . . . . . . . . 10
|
| 9 | 8 | ord 729 |
. . . . . . . . 9
|
| 10 | 6, 9 | mpi 15 |
. . . . . . . 8
|
| 11 | df1o2 6575 |
. . . . . . . . 9
| |
| 12 | 11 | rexeqi 2733 |
. . . . . . . 8
|
| 13 | 10, 12 | sylib 122 |
. . . . . . 7
|
| 14 | 0ex 4211 |
. . . . . . . 8
| |
| 15 | fveq2 5627 |
. . . . . . . . 9
| |
| 16 | 15 | eqeq2d 2241 |
. . . . . . . 8
|
| 17 | 14, 16 | rexsn 3710 |
. . . . . . 7
|
| 18 | 13, 17 | sylib 122 |
. . . . . 6
|
| 19 | 3 | elexi 2812 |
. . . . . . . 8
|
| 20 | 19 | fvconst2 5855 |
. . . . . . 7
|
| 21 | 5, 20 | ax-mp 5 |
. . . . . 6
|
| 22 | 18, 21 | eqtr4di 2280 |
. . . . 5
|
| 23 | fveq2 5627 |
. . . . . 6
| |
| 24 | 23 | rspceeqv 2925 |
. . . . 5
|
| 25 | 5, 22, 24 | sylancr 414 |
. . . 4
|
| 26 | 25 | rgen 2583 |
. . 3
|
| 27 | dffo3 5782 |
. . 3
| |
| 28 | 4, 26, 27 | mpbir2an 948 |
. 2
|
| 29 | omex 4685 |
. . . 4
| |
| 30 | 19 | snex 4269 |
. . . 4
|
| 31 | 29, 30 | xpex 4834 |
. . 3
|
| 32 | foeq1 5544 |
. . 3
| |
| 33 | 31, 32 | spcev 2898 |
. 2
|
| 34 | 28, 33 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-dju 7205 df-inl 7214 df-inr 7215 |
| This theorem is referenced by: enumct 7282 |
| Copyright terms: Public domain | W3C validator |