ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct Unicode version

Theorem 0ct 7274
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct  |-  E. f 
f : om -onto-> ( (/) 1o )

Proof of Theorem 0ct
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6586 . . . . 5  |-  (/)  e.  1o
2 djurcl 7219 . . . . 5  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( (/) 1o ) )
31, 2ax-mp 5 . . . 4  |-  (inr `  (/) )  e.  ( (/) 1o )
43fconst6 5525 . . 3  |-  ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )
5 peano1 4686 . . . . 5  |-  (/)  e.  om
6 rex0 3509 . . . . . . . . 9  |-  -.  E. w  e.  (/)  y  =  (inl `  w )
7 djur 7236 . . . . . . . . . . 11  |-  ( y  e.  ( (/) 1o )  <-> 
( E. w  e.  (/)  y  =  (inl `  w )  \/  E. w  e.  1o  y  =  (inr `  w )
) )
87biimpi 120 . . . . . . . . . 10  |-  ( y  e.  ( (/) 1o )  ->  ( E. w  e.  (/)  y  =  (inl
`  w )  \/ 
E. w  e.  1o  y  =  (inr `  w
) ) )
98ord 729 . . . . . . . . 9  |-  ( y  e.  ( (/) 1o )  ->  ( -.  E. w  e.  (/)  y  =  (inl `  w )  ->  E. w  e.  1o  y  =  (inr `  w
) ) )
106, 9mpi 15 . . . . . . . 8  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  1o  y  =  (inr `  w
) )
11 df1o2 6575 . . . . . . . . 9  |-  1o  =  { (/) }
1211rexeqi 2733 . . . . . . . 8  |-  ( E. w  e.  1o  y  =  (inr `  w )  <->  E. w  e.  { (/) } y  =  (inr `  w ) )
1310, 12sylib 122 . . . . . . 7  |-  ( y  e.  ( (/) 1o )  ->  E. w  e.  { (/)
} y  =  (inr
`  w ) )
14 0ex 4211 . . . . . . . 8  |-  (/)  e.  _V
15 fveq2 5627 . . . . . . . . 9  |-  ( w  =  (/)  ->  (inr `  w )  =  (inr
`  (/) ) )
1615eqeq2d 2241 . . . . . . . 8  |-  ( w  =  (/)  ->  ( y  =  (inr `  w
)  <->  y  =  (inr
`  (/) ) ) )
1714, 16rexsn 3710 . . . . . . 7  |-  ( E. w  e.  { (/) } y  =  (inr `  w )  <->  y  =  (inr `  (/) ) )
1813, 17sylib 122 . . . . . 6  |-  ( y  e.  ( (/) 1o )  ->  y  =  (inr
`  (/) ) )
193elexi 2812 . . . . . . . 8  |-  (inr `  (/) )  e.  _V
2019fvconst2 5855 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( om  X.  { (inr `  (/) ) } ) `  (/) )  =  (inr `  (/) ) )
215, 20ax-mp 5 . . . . . 6  |-  ( ( om  X.  { (inr
`  (/) ) } ) `
 (/) )  =  (inr
`  (/) )
2218, 21eqtr4di 2280 . . . . 5  |-  ( y  e.  ( (/) 1o )  ->  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  (/) ) )
23 fveq2 5627 . . . . . 6  |-  ( z  =  (/)  ->  ( ( om  X.  { (inr
`  (/) ) } ) `
 z )  =  ( ( om  X.  { (inr `  (/) ) } ) `  (/) ) )
2423rspceeqv 2925 . . . . 5  |-  ( (
(/)  e.  om  /\  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  (/) ) )  ->  E. z  e.  om  y  =  ( ( om  X.  {
(inr `  (/) ) } ) `  z ) )
255, 22, 24sylancr 414 . . . 4  |-  ( y  e.  ( (/) 1o )  ->  E. z  e.  om  y  =  ( ( om  X.  { (inr `  (/) ) } ) `  z ) )
2625rgen 2583 . . 3  |-  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z )
27 dffo3 5782 . . 3  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  <->  ( ( om 
X.  { (inr `  (/) ) } ) : om --> ( (/) 1o )  /\  A. y  e.  ( (/) 1o ) E. z  e.  om  y  =  ( ( om 
X.  { (inr `  (/) ) } ) `  z ) ) )
284, 26, 27mpbir2an 948 . 2  |-  ( om 
X.  { (inr `  (/) ) } ) : om -onto-> ( (/) 1o )
29 omex 4685 . . . 4  |-  om  e.  _V
3019snex 4269 . . . 4  |-  { (inr
`  (/) ) }  e.  _V
3129, 30xpex 4834 . . 3  |-  ( om 
X.  { (inr `  (/) ) } )  e. 
_V
32 foeq1 5544 . . 3  |-  ( f  =  ( om  X.  { (inr `  (/) ) } )  ->  ( f : om -onto-> ( (/) 1o )  <-> 
( om  X.  {
(inr `  (/) ) } ) : om -onto-> ( (/) 1o ) ) )
3331, 32spcev 2898 . 2  |-  ( ( om  X.  { (inr
`  (/) ) } ) : om -onto-> ( (/) 1o )  ->  E. f 
f : om -onto-> ( (/) 1o ) )
3428, 33ax-mp 5 1  |-  E. f 
f : om -onto-> ( (/) 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   (/)c0 3491   {csn 3666   omcom 4682    X. cxp 4717   -->wf 5314   -onto->wfo 5316   ` cfv 5318   1oc1o 6555   ⊔ cdju 7204  inlcinl 7212  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  enumct  7282
  Copyright terms: Public domain W3C validator