Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elreal | Unicode version |
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
elreal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7777 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | elxp2 4627 | . . 3 | |
4 | 0r 7705 | . . . . . . 7 | |
5 | 4 | elexi 2742 | . . . . . 6 |
6 | opeq2 3764 | . . . . . . 7 | |
7 | 6 | eqeq2d 2182 | . . . . . 6 |
8 | 5, 7 | rexsn 3625 | . . . . 5 |
9 | eqcom 2172 | . . . . 5 | |
10 | 8, 9 | bitri 183 | . . . 4 |
11 | 10 | rexbii 2477 | . . 3 |
12 | 3, 11 | bitri 183 | . 2 |
13 | 2, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 wrex 2449 csn 3581 cop 3584 cxp 4607 cnr 7252 c0r 7253 cr 7766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-1o 6393 df-oadd 6397 df-omul 6398 df-er 6511 df-ec 6513 df-qs 6517 df-ni 7259 df-pli 7260 df-mi 7261 df-lti 7262 df-plpq 7299 df-mpq 7300 df-enq 7302 df-nqqs 7303 df-plqqs 7304 df-mqqs 7305 df-1nqqs 7306 df-rq 7307 df-ltnqqs 7308 df-inp 7421 df-i1p 7422 df-enr 7681 df-nr 7682 df-0r 7686 df-r 7777 |
This theorem is referenced by: elrealeu 7784 axaddrcl 7820 axmulrcl 7822 axprecex 7835 axpre-ltirr 7837 axpre-ltwlin 7838 axpre-lttrn 7839 axpre-apti 7840 axpre-ltadd 7841 axpre-mulgt0 7842 axpre-mulext 7843 axarch 7846 axcaucvglemres 7854 |
Copyright terms: Public domain | W3C validator |