ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn Unicode version

Theorem restsn 12388
Description: The only subspace topology induced by the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )

Proof of Theorem restsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 12297 . . . 4  |-  { (/) }  e.  Top
2 elrest 12166 . . . 4  |-  ( ( { (/) }  e.  Top  /\  A  e.  V )  ->  ( x  e.  ( { (/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A ) ) )
31, 2mpan 421 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A
) ) )
4 0ex 4063 . . . . 5  |-  (/)  e.  _V
5 ineq1 3275 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  ( (/)  i^i  A ) )
6 0in 3403 . . . . . . 7  |-  ( (/)  i^i 
A )  =  (/)
75, 6eqtrdi 2189 . . . . . 6  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  (/) )
87eqeq2d 2152 . . . . 5  |-  ( y  =  (/)  ->  ( x  =  ( y  i^i 
A )  <->  x  =  (/) ) )
94, 8rexsn 3575 . . . 4  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  =  (/) )
10 velsn 3549 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
119, 10bitr4i 186 . . 3  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  e.  {
(/) } )
123, 11syl6bb 195 . 2  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  x  e.  {
(/) } ) )
1312eqrdv 2138 1  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 1481   E.wrex 2418    i^i cin 3075   (/)c0 3368   {csn 3532  (class class class)co 5782   ↾t crest 12159   Topctop 12203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-rest 12161  df-top 12204  df-topon 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator