ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn Unicode version

Theorem restsn 12363
Description: The only subspace topology induced by the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )

Proof of Theorem restsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 12272 . . . 4  |-  { (/) }  e.  Top
2 elrest 12141 . . . 4  |-  ( ( { (/) }  e.  Top  /\  A  e.  V )  ->  ( x  e.  ( { (/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A ) ) )
31, 2mpan 420 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A
) ) )
4 0ex 4055 . . . . 5  |-  (/)  e.  _V
5 ineq1 3270 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  ( (/)  i^i  A ) )
6 0in 3398 . . . . . . 7  |-  ( (/)  i^i 
A )  =  (/)
75, 6syl6eq 2188 . . . . . 6  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  (/) )
87eqeq2d 2151 . . . . 5  |-  ( y  =  (/)  ->  ( x  =  ( y  i^i 
A )  <->  x  =  (/) ) )
94, 8rexsn 3568 . . . 4  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  =  (/) )
10 velsn 3544 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
119, 10bitr4i 186 . . 3  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  e.  {
(/) } )
123, 11syl6bb 195 . 2  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  x  e.  {
(/) } ) )
1312eqrdv 2137 1  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417    i^i cin 3070   (/)c0 3363   {csn 3527  (class class class)co 5774   ↾t crest 12134   Topctop 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-rest 12136  df-top 12179  df-topon 12192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator