ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn Unicode version

Theorem restsn 12820
Description: The only subspace topology induced by the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )

Proof of Theorem restsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 12729 . . . 4  |-  { (/) }  e.  Top
2 elrest 12563 . . . 4  |-  ( ( { (/) }  e.  Top  /\  A  e.  V )  ->  ( x  e.  ( { (/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A ) ) )
31, 2mpan 421 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A
) ) )
4 0ex 4109 . . . . 5  |-  (/)  e.  _V
5 ineq1 3316 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  ( (/)  i^i  A ) )
6 0in 3444 . . . . . . 7  |-  ( (/)  i^i 
A )  =  (/)
75, 6eqtrdi 2215 . . . . . 6  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  (/) )
87eqeq2d 2177 . . . . 5  |-  ( y  =  (/)  ->  ( x  =  ( y  i^i 
A )  <->  x  =  (/) ) )
94, 8rexsn 3620 . . . 4  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  =  (/) )
10 velsn 3593 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
119, 10bitr4i 186 . . 3  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  e.  {
(/) } )
123, 11bitrdi 195 . 2  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  x  e.  {
(/) } ) )
1312eqrdv 2163 1  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    i^i cin 3115   (/)c0 3409   {csn 3576  (class class class)co 5842   ↾t crest 12556   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-rest 12558  df-top 12636  df-topon 12649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator