ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn Unicode version

Theorem restsn 14348
Description: The only subspace topology induced by the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )

Proof of Theorem restsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 14257 . . . 4  |-  { (/) }  e.  Top
2 elrest 12857 . . . 4  |-  ( ( { (/) }  e.  Top  /\  A  e.  V )  ->  ( x  e.  ( { (/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A ) ) )
31, 2mpan 424 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A
) ) )
4 0ex 4156 . . . . 5  |-  (/)  e.  _V
5 ineq1 3353 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  ( (/)  i^i  A ) )
6 0in 3482 . . . . . . 7  |-  ( (/)  i^i 
A )  =  (/)
75, 6eqtrdi 2242 . . . . . 6  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  (/) )
87eqeq2d 2205 . . . . 5  |-  ( y  =  (/)  ->  ( x  =  ( y  i^i 
A )  <->  x  =  (/) ) )
94, 8rexsn 3662 . . . 4  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  =  (/) )
10 velsn 3635 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
119, 10bitr4i 187 . . 3  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  e.  {
(/) } )
123, 11bitrdi 196 . 2  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  x  e.  {
(/) } ) )
1312eqrdv 2191 1  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    i^i cin 3152   (/)c0 3446   {csn 3618  (class class class)co 5918   ↾t crest 12850   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-rest 12852  df-top 14166  df-topon 14179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator