ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsn Unicode version

Theorem restsn 14033
Description: The only subspace topology induced by the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )

Proof of Theorem restsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 13942 . . . 4  |-  { (/) }  e.  Top
2 elrest 12713 . . . 4  |-  ( ( { (/) }  e.  Top  /\  A  e.  V )  ->  ( x  e.  ( { (/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A ) ) )
31, 2mpan 424 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  E. y  e.  { (/) } x  =  ( y  i^i  A
) ) )
4 0ex 4142 . . . . 5  |-  (/)  e.  _V
5 ineq1 3341 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  ( (/)  i^i  A ) )
6 0in 3470 . . . . . . 7  |-  ( (/)  i^i 
A )  =  (/)
75, 6eqtrdi 2236 . . . . . 6  |-  ( y  =  (/)  ->  ( y  i^i  A )  =  (/) )
87eqeq2d 2199 . . . . 5  |-  ( y  =  (/)  ->  ( x  =  ( y  i^i 
A )  <->  x  =  (/) ) )
94, 8rexsn 3648 . . . 4  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  =  (/) )
10 velsn 3621 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
119, 10bitr4i 187 . . 3  |-  ( E. y  e.  { (/) } x  =  ( y  i^i  A )  <->  x  e.  {
(/) } )
123, 11bitrdi 196 . 2  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }t  A )  <->  x  e.  {
(/) } ) )
1312eqrdv 2185 1  |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466    i^i cin 3140   (/)c0 3434   {csn 3604  (class class class)co 5888   ↾t crest 12706   Topctop 13850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-rest 12708  df-top 13851  df-topon 13864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator