ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2 Unicode version

Theorem dfco2 5182
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfco2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5181 . 2  |-  Rel  ( A  o.  B )
2 reliun 4796 . . 3  |-  ( Rel  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  A. x  e.  _V  Rel  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
3 relxp 4784 . . . 4  |-  Rel  (
( `' B " { x } )  X.  ( A " { x } ) )
43a1i 9 . . 3  |-  ( x  e.  _V  ->  Rel  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
52, 4mprgbir 2564 . 2  |-  Rel  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) )
6 vex 2775 . . . 4  |-  y  e. 
_V
7 vex 2775 . . . 4  |-  z  e. 
_V
8 opelco2g 4846 . . . 4  |-  ( ( y  e.  _V  /\  z  e.  _V )  ->  ( <. y ,  z
>.  e.  ( A  o.  B )  <->  E. x
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) ) )
96, 7, 8mp2an 426 . . 3  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  E. x ( <.
y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
10 eliun 3931 . . . 4  |-  ( <.
y ,  z >.  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x  e.  _V  <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
11 rexv 2790 . . . 4  |-  ( E. x  e.  _V  <. y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x <. y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
12 opelxp 4705 . . . . . 6  |-  ( <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  ( y  e.  ( `' B " { x } )  /\  z  e.  ( A " { x } ) ) )
13 vex 2775 . . . . . . . . 9  |-  x  e. 
_V
1413, 6elimasn 5049 . . . . . . . 8  |-  ( y  e.  ( `' B " { x } )  <->  <. x ,  y >.  e.  `' B )
1513, 6opelcnv 4860 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  `' B  <->  <. y ,  x >.  e.  B )
1614, 15bitri 184 . . . . . . 7  |-  ( y  e.  ( `' B " { x } )  <->  <. y ,  x >.  e.  B )
1713, 7elimasn 5049 . . . . . . 7  |-  ( z  e.  ( A " { x } )  <->  <. x ,  z >.  e.  A )
1816, 17anbi12i 460 . . . . . 6  |-  ( ( y  e.  ( `' B " { x } )  /\  z  e.  ( A " {
x } ) )  <-> 
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
1912, 18bitri 184 . . . . 5  |-  ( <.
y ,  z >.  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  ( <. y ,  x >.  e.  B  /\  <. x ,  z
>.  e.  A ) )
2019exbii 1628 . . . 4  |-  ( E. x <. y ,  z
>.  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x
( <. y ,  x >.  e.  B  /\  <. x ,  z >.  e.  A
) )
2110, 11, 203bitrri 207 . . 3  |-  ( E. x ( <. y ,  x >.  e.  B  /\  <. x ,  z
>.  e.  A )  <->  <. y ,  z >.  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
229, 21bitri 184 . 2  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  <. y ,  z
>.  e.  U_ x  e. 
_V  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
231, 5, 22eqrelriiv 4769 1  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   _Vcvv 2772   {csn 3633   <.cop 3636   U_ciun 3927    X. cxp 4673   `'ccnv 4674   "cima 4678    o. ccom 4679   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iun 3929  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  dfco2a  5183
  Copyright terms: Public domain W3C validator