| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version | ||
| Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5169 |
. 2
| |
| 2 | reliun 4785 |
. . 3
| |
| 3 | relxp 4773 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | 2, 4 | mprgbir 2555 |
. 2
|
| 6 | vex 2766 |
. . . 4
| |
| 7 | vex 2766 |
. . . 4
| |
| 8 | opelco2g 4835 |
. . . 4
| |
| 9 | 6, 7, 8 | mp2an 426 |
. . 3
|
| 10 | eliun 3921 |
. . . 4
| |
| 11 | rexv 2781 |
. . . 4
| |
| 12 | opelxp 4694 |
. . . . . 6
| |
| 13 | vex 2766 |
. . . . . . . . 9
| |
| 14 | 13, 6 | elimasn 5037 |
. . . . . . . 8
|
| 15 | 13, 6 | opelcnv 4849 |
. . . . . . . 8
|
| 16 | 14, 15 | bitri 184 |
. . . . . . 7
|
| 17 | 13, 7 | elimasn 5037 |
. . . . . . 7
|
| 18 | 16, 17 | anbi12i 460 |
. . . . . 6
|
| 19 | 12, 18 | bitri 184 |
. . . . 5
|
| 20 | 19 | exbii 1619 |
. . . 4
|
| 21 | 10, 11, 20 | 3bitrri 207 |
. . 3
|
| 22 | 9, 21 | bitri 184 |
. 2
|
| 23 | 1, 5, 22 | eqrelriiv 4758 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iun 3919 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: dfco2a 5171 |
| Copyright terms: Public domain | W3C validator |