| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version | ||
| Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5200 |
. 2
| |
| 2 | reliun 4814 |
. . 3
| |
| 3 | relxp 4802 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | 2, 4 | mprgbir 2566 |
. 2
|
| 6 | vex 2779 |
. . . 4
| |
| 7 | vex 2779 |
. . . 4
| |
| 8 | opelco2g 4864 |
. . . 4
| |
| 9 | 6, 7, 8 | mp2an 426 |
. . 3
|
| 10 | eliun 3945 |
. . . 4
| |
| 11 | rexv 2795 |
. . . 4
| |
| 12 | opelxp 4723 |
. . . . . 6
| |
| 13 | vex 2779 |
. . . . . . . . 9
| |
| 14 | 13, 6 | elimasn 5068 |
. . . . . . . 8
|
| 15 | 13, 6 | opelcnv 4878 |
. . . . . . . 8
|
| 16 | 14, 15 | bitri 184 |
. . . . . . 7
|
| 17 | 13, 7 | elimasn 5068 |
. . . . . . 7
|
| 18 | 16, 17 | anbi12i 460 |
. . . . . 6
|
| 19 | 12, 18 | bitri 184 |
. . . . 5
|
| 20 | 19 | exbii 1629 |
. . . 4
|
| 21 | 10, 11, 20 | 3bitrri 207 |
. . 3
|
| 22 | 9, 21 | bitri 184 |
. 2
|
| 23 | 1, 5, 22 | eqrelriiv 4787 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: dfco2a 5202 |
| Copyright terms: Public domain | W3C validator |