Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version |
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
dfco2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5109 | . 2 | |
2 | reliun 4732 | . . 3 | |
3 | relxp 4720 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | 2, 4 | mprgbir 2528 | . 2 |
6 | vex 2733 | . . . 4 | |
7 | vex 2733 | . . . 4 | |
8 | opelco2g 4779 | . . . 4 | |
9 | 6, 7, 8 | mp2an 424 | . . 3 |
10 | eliun 3877 | . . . 4 | |
11 | rexv 2748 | . . . 4 | |
12 | opelxp 4641 | . . . . . 6 | |
13 | vex 2733 | . . . . . . . . 9 | |
14 | 13, 6 | elimasn 4978 | . . . . . . . 8 |
15 | 13, 6 | opelcnv 4793 | . . . . . . . 8 |
16 | 14, 15 | bitri 183 | . . . . . . 7 |
17 | 13, 7 | elimasn 4978 | . . . . . . 7 |
18 | 16, 17 | anbi12i 457 | . . . . . 6 |
19 | 12, 18 | bitri 183 | . . . . 5 |
20 | 19 | exbii 1598 | . . . 4 |
21 | 10, 11, 20 | 3bitrri 206 | . . 3 |
22 | 9, 21 | bitri 183 | . 2 |
23 | 1, 5, 22 | eqrelriiv 4705 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 csn 3583 cop 3586 ciun 3873 cxp 4609 ccnv 4610 cima 4614 ccom 4615 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: dfco2a 5111 |
Copyright terms: Public domain | W3C validator |