| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version | ||
| Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| dfco2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relco 5168 | 
. 2
 | |
| 2 | reliun 4784 | 
. . 3
 | |
| 3 | relxp 4772 | 
. . . 4
 | |
| 4 | 3 | a1i 9 | 
. . 3
 | 
| 5 | 2, 4 | mprgbir 2555 | 
. 2
 | 
| 6 | vex 2766 | 
. . . 4
 | |
| 7 | vex 2766 | 
. . . 4
 | |
| 8 | opelco2g 4834 | 
. . . 4
 | |
| 9 | 6, 7, 8 | mp2an 426 | 
. . 3
 | 
| 10 | eliun 3920 | 
. . . 4
 | |
| 11 | rexv 2781 | 
. . . 4
 | |
| 12 | opelxp 4693 | 
. . . . . 6
 | |
| 13 | vex 2766 | 
. . . . . . . . 9
 | |
| 14 | 13, 6 | elimasn 5036 | 
. . . . . . . 8
 | 
| 15 | 13, 6 | opelcnv 4848 | 
. . . . . . . 8
 | 
| 16 | 14, 15 | bitri 184 | 
. . . . . . 7
 | 
| 17 | 13, 7 | elimasn 5036 | 
. . . . . . 7
 | 
| 18 | 16, 17 | anbi12i 460 | 
. . . . . 6
 | 
| 19 | 12, 18 | bitri 184 | 
. . . . 5
 | 
| 20 | 19 | exbii 1619 | 
. . . 4
 | 
| 21 | 10, 11, 20 | 3bitrri 207 | 
. . 3
 | 
| 22 | 9, 21 | bitri 184 | 
. 2
 | 
| 23 | 1, 5, 22 | eqrelriiv 4757 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iun 3918 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 | 
| This theorem is referenced by: dfco2a 5170 | 
| Copyright terms: Public domain | W3C validator |