Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version |
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
dfco2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5102 | . 2 | |
2 | reliun 4725 | . . 3 | |
3 | relxp 4713 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | 2, 4 | mprgbir 2524 | . 2 |
6 | vex 2729 | . . . 4 | |
7 | vex 2729 | . . . 4 | |
8 | opelco2g 4772 | . . . 4 | |
9 | 6, 7, 8 | mp2an 423 | . . 3 |
10 | eliun 3870 | . . . 4 | |
11 | rexv 2744 | . . . 4 | |
12 | opelxp 4634 | . . . . . 6 | |
13 | vex 2729 | . . . . . . . . 9 | |
14 | 13, 6 | elimasn 4971 | . . . . . . . 8 |
15 | 13, 6 | opelcnv 4786 | . . . . . . . 8 |
16 | 14, 15 | bitri 183 | . . . . . . 7 |
17 | 13, 7 | elimasn 4971 | . . . . . . 7 |
18 | 16, 17 | anbi12i 456 | . . . . . 6 |
19 | 12, 18 | bitri 183 | . . . . 5 |
20 | 19 | exbii 1593 | . . . 4 |
21 | 10, 11, 20 | 3bitrri 206 | . . 3 |
22 | 9, 21 | bitri 183 | . 2 |
23 | 1, 5, 22 | eqrelriiv 4698 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 cvv 2726 csn 3576 cop 3579 ciun 3866 cxp 4602 ccnv 4603 cima 4607 ccom 4608 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: dfco2a 5104 |
Copyright terms: Public domain | W3C validator |