ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexv GIF version

Theorem rexv 2818
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 2514 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2802 . . . 4 𝑥 ∈ V
32biantrur 303 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43exbii 1651 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 187 1 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538  wcel 2200  wrex 2509  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rex 2514  df-v 2801
This theorem is referenced by:  rexcom4  2823  spesbc  3115  abnex  4537  dfco2  5227  dfco2a  5228  finacn  7382
  Copyright terms: Public domain W3C validator