Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexv | GIF version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 301 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | exbii 1593 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 186 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rex 2450 df-v 2728 |
This theorem is referenced by: rexcom4 2749 spesbc 3036 abnex 4425 dfco2 5103 dfco2a 5104 |
Copyright terms: Public domain | W3C validator |