ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexv GIF version

Theorem rexv 2778
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 2478 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2763 . . . 4 𝑥 ∈ V
32biantrur 303 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43exbii 1616 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 187 1 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1503  wcel 2164  wrex 2473  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-rex 2478  df-v 2762
This theorem is referenced by:  rexcom4  2783  spesbc  3071  abnex  4478  dfco2  5165  dfco2a  5166
  Copyright terms: Public domain W3C validator