| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abnex | Unicode version | ||
| Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4483 and pwnex 4484. See the comment of abnexg 4481. (Contributed by BJ, 2-May-2021.) | 
| Ref | Expression | 
|---|---|
| abnex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vprc 4165 | 
. 2
 | |
| 2 | alral 2542 | 
. . 3
 | |
| 3 | rexv 2781 | 
. . . . . . 7
 | |
| 4 | 3 | bicomi 132 | 
. . . . . 6
 | 
| 5 | 4 | abbii 2312 | 
. . . . 5
 | 
| 6 | 5 | eleq1i 2262 | 
. . . 4
 | 
| 7 | 6 | biimpi 120 | 
. . 3
 | 
| 8 | abnexg 4481 | 
. . 3
 | |
| 9 | 2, 7, 8 | syl2im 38 | 
. 2
 | 
| 10 | 1, 9 | mtoi 665 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-iun 3918 | 
| This theorem is referenced by: pwnex 4484 | 
| Copyright terms: Public domain | W3C validator |