ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abnex Unicode version

Theorem abnex 4306
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4307 and pwnex 4308. See the comment of abnexg 4305. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
abnex  |-  ( A. x ( F  e.  V  /\  x  e.  F )  ->  -.  { y  |  E. x  y  =  F }  e.  _V )
Distinct variable groups:    x, y    y, F
Allowed substitution hints:    F( x)    V( x, y)

Proof of Theorem abnex
StepHypRef Expression
1 vprc 4000 . 2  |-  -.  _V  e.  _V
2 alral 2437 . . 3  |-  ( A. x ( F  e.  V  /\  x  e.  F )  ->  A. x  e.  _V  ( F  e.  V  /\  x  e.  F ) )
3 rexv 2659 . . . . . . 7  |-  ( E. x  e.  _V  y  =  F  <->  E. x  y  =  F )
43bicomi 131 . . . . . 6  |-  ( E. x  y  =  F  <->  E. x  e.  _V  y  =  F )
54abbii 2215 . . . . 5  |-  { y  |  E. x  y  =  F }  =  { y  |  E. x  e.  _V  y  =  F }
65eleq1i 2165 . . . 4  |-  ( { y  |  E. x  y  =  F }  e.  _V  <->  { y  |  E. x  e.  _V  y  =  F }  e.  _V )
76biimpi 119 . . 3  |-  ( { y  |  E. x  y  =  F }  e.  _V  ->  { y  |  E. x  e.  _V  y  =  F }  e.  _V )
8 abnexg 4305 . . 3  |-  ( A. x  e.  _V  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  _V  y  =  F }  e.  _V  ->  _V  e.  _V ) )
92, 7, 8syl2im 38 . 2  |-  ( A. x ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  y  =  F }  e.  _V  ->  _V  e.  _V ) )
101, 9mtoi 631 1  |-  ( A. x ( F  e.  V  /\  x  e.  F )  ->  -.  { y  |  E. x  y  =  F }  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1297    = wceq 1299   E.wex 1436    e. wcel 1448   {cab 2086   A.wral 2375   E.wrex 2376   _Vcvv 2641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-in 3027  df-ss 3034  df-sn 3480  df-uni 3684  df-iun 3762
This theorem is referenced by:  pwnex  4308
  Copyright terms: Public domain W3C validator