Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abnex | Unicode version |
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4426 and pwnex 4427. See the comment of abnexg 4424. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
abnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4114 | . 2 | |
2 | alral 2511 | . . 3 | |
3 | rexv 2744 | . . . . . . 7 | |
4 | 3 | bicomi 131 | . . . . . 6 |
5 | 4 | abbii 2282 | . . . . 5 |
6 | 5 | eleq1i 2232 | . . . 4 |
7 | 6 | biimpi 119 | . . 3 |
8 | abnexg 4424 | . . 3 | |
9 | 2, 7, 8 | syl2im 38 | . 2 |
10 | 1, 9 | mtoi 654 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-iun 3868 |
This theorem is referenced by: pwnex 4427 |
Copyright terms: Public domain | W3C validator |