ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2a Unicode version

Theorem dfco2a 5111
Description: Generalization of dfco2 5110, where  C can have any value between  dom  A  i^i  ran 
B and  _V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dfco2a
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 5110 . 2  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
2 vex 2733 . . . . . . . . . . . . . 14  |-  x  e. 
_V
3 vex 2733 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
43eliniseg 4981 . . . . . . . . . . . . . 14  |-  ( x  e.  _V  ->  (
z  e.  ( `' B " { x } )  <->  z B x ) )
52, 4ax-mp 5 . . . . . . . . . . . . 13  |-  ( z  e.  ( `' B " { x } )  <-> 
z B x )
63, 2brelrn 4844 . . . . . . . . . . . . 13  |-  ( z B x  ->  x  e.  ran  B )
75, 6sylbi 120 . . . . . . . . . . . 12  |-  ( z  e.  ( `' B " { x } )  ->  x  e.  ran  B )
8 vex 2733 . . . . . . . . . . . . . 14  |-  w  e. 
_V
92, 8elimasn 4978 . . . . . . . . . . . . 13  |-  ( w  e.  ( A " { x } )  <->  <. x ,  w >.  e.  A )
102, 8opeldm 4814 . . . . . . . . . . . . 13  |-  ( <.
x ,  w >.  e.  A  ->  x  e.  dom  A )
119, 10sylbi 120 . . . . . . . . . . . 12  |-  ( w  e.  ( A " { x } )  ->  x  e.  dom  A )
127, 11anim12ci 337 . . . . . . . . . . 11  |-  ( ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) )  ->  ( x  e. 
dom  A  /\  x  e.  ran  B ) )
1312adantl 275 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1413exlimivv 1889 . . . . . . . . 9  |-  ( E. z E. w ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
15 elxp 4628 . . . . . . . . 9  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. z E. w ( y  = 
<. z ,  w >.  /\  ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) ) )
16 elin 3310 . . . . . . . . 9  |-  ( x  e.  ( dom  A  i^i  ran  B )  <->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1714, 15, 163imtr4i 200 . . . . . . . 8  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  ( dom  A  i^i  ran 
B ) )
18 ssel 3141 . . . . . . . 8  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( x  e.  ( dom 
A  i^i  ran  B )  ->  x  e.  C
) )
1917, 18syl5 32 . . . . . . 7  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  C ) )
2019pm4.71rd 392 . . . . . 6  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
2120exbidv 1818 . . . . 5  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
22 rexv 2748 . . . . 5  |-  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
23 df-rex 2454 . . . . 5  |-  ( E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x
( x  e.  C  /\  y  e.  (
( `' B " { x } )  X.  ( A " { x } ) ) ) )
2421, 22, 233bitr4g 222 . . . 4  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
25 eliun 3877 . . . 4  |-  ( y  e.  U_ x  e. 
_V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
26 eliun 3877 . . . 4  |-  ( y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
2724, 25, 263bitr4g 222 . . 3  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
2827eqrdv 2168 . 2  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  U_ x  e.  _V  (
( `' B " { x } )  X.  ( A " { x } ) )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
291, 28eqtrid 2215 1  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730    i^i cin 3120    C_ wss 3121   {csn 3583   <.cop 3586   U_ciun 3873   class class class wbr 3989    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612   "cima 4614    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-iun 3875  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator