| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfco2a | Unicode version | ||
| Description: Generalization of dfco2 5201, where |
| Ref | Expression |
|---|---|
| dfco2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfco2 5201 |
. 2
| |
| 2 | vex 2779 |
. . . . . . . . . . . . . 14
| |
| 3 | vex 2779 |
. . . . . . . . . . . . . . 15
| |
| 4 | 3 | eliniseg 5071 |
. . . . . . . . . . . . . 14
|
| 5 | 2, 4 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 6 | 3, 2 | brelrn 4930 |
. . . . . . . . . . . . 13
|
| 7 | 5, 6 | sylbi 121 |
. . . . . . . . . . . 12
|
| 8 | vex 2779 |
. . . . . . . . . . . . . 14
| |
| 9 | 2, 8 | elimasn 5068 |
. . . . . . . . . . . . 13
|
| 10 | 2, 8 | opeldm 4900 |
. . . . . . . . . . . . 13
|
| 11 | 9, 10 | sylbi 121 |
. . . . . . . . . . . 12
|
| 12 | 7, 11 | anim12ci 339 |
. . . . . . . . . . 11
|
| 13 | 12 | adantl 277 |
. . . . . . . . . 10
|
| 14 | 13 | exlimivv 1921 |
. . . . . . . . 9
|
| 15 | elxp 4710 |
. . . . . . . . 9
| |
| 16 | elin 3364 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | 3imtr4i 201 |
. . . . . . . 8
|
| 18 | ssel 3195 |
. . . . . . . 8
| |
| 19 | 17, 18 | syl5 32 |
. . . . . . 7
|
| 20 | 19 | pm4.71rd 394 |
. . . . . 6
|
| 21 | 20 | exbidv 1849 |
. . . . 5
|
| 22 | rexv 2795 |
. . . . 5
| |
| 23 | df-rex 2492 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3bitr4g 223 |
. . . 4
|
| 25 | eliun 3945 |
. . . 4
| |
| 26 | eliun 3945 |
. . . 4
| |
| 27 | 24, 25, 26 | 3bitr4g 223 |
. . 3
|
| 28 | 27 | eqrdv 2205 |
. 2
|
| 29 | 1, 28 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |