| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfco2a | Unicode version | ||
| Description: Generalization of dfco2 5228, where |
| Ref | Expression |
|---|---|
| dfco2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfco2 5228 |
. 2
| |
| 2 | vex 2802 |
. . . . . . . . . . . . . 14
| |
| 3 | vex 2802 |
. . . . . . . . . . . . . . 15
| |
| 4 | 3 | eliniseg 5098 |
. . . . . . . . . . . . . 14
|
| 5 | 2, 4 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 6 | 3, 2 | brelrn 4957 |
. . . . . . . . . . . . 13
|
| 7 | 5, 6 | sylbi 121 |
. . . . . . . . . . . 12
|
| 8 | vex 2802 |
. . . . . . . . . . . . . 14
| |
| 9 | 2, 8 | elimasn 5095 |
. . . . . . . . . . . . 13
|
| 10 | 2, 8 | opeldm 4926 |
. . . . . . . . . . . . 13
|
| 11 | 9, 10 | sylbi 121 |
. . . . . . . . . . . 12
|
| 12 | 7, 11 | anim12ci 339 |
. . . . . . . . . . 11
|
| 13 | 12 | adantl 277 |
. . . . . . . . . 10
|
| 14 | 13 | exlimivv 1943 |
. . . . . . . . 9
|
| 15 | elxp 4736 |
. . . . . . . . 9
| |
| 16 | elin 3387 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | 3imtr4i 201 |
. . . . . . . 8
|
| 18 | ssel 3218 |
. . . . . . . 8
| |
| 19 | 17, 18 | syl5 32 |
. . . . . . 7
|
| 20 | 19 | pm4.71rd 394 |
. . . . . 6
|
| 21 | 20 | exbidv 1871 |
. . . . 5
|
| 22 | rexv 2818 |
. . . . 5
| |
| 23 | df-rex 2514 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3bitr4g 223 |
. . . 4
|
| 25 | eliun 3969 |
. . . 4
| |
| 26 | eliun 3969 |
. . . 4
| |
| 27 | 24, 25, 26 | 3bitr4g 223 |
. . 3
|
| 28 | 27 | eqrdv 2227 |
. 2
|
| 29 | 1, 28 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3967 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |