Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfco2a | Unicode version |
Description: Generalization of dfco2 5103, where can have any value between and . (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfco2a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfco2 5103 | . 2 | |
2 | vex 2729 | . . . . . . . . . . . . . 14 | |
3 | vex 2729 | . . . . . . . . . . . . . . 15 | |
4 | 3 | eliniseg 4974 | . . . . . . . . . . . . . 14 |
5 | 2, 4 | ax-mp 5 | . . . . . . . . . . . . 13 |
6 | 3, 2 | brelrn 4837 | . . . . . . . . . . . . 13 |
7 | 5, 6 | sylbi 120 | . . . . . . . . . . . 12 |
8 | vex 2729 | . . . . . . . . . . . . . 14 | |
9 | 2, 8 | elimasn 4971 | . . . . . . . . . . . . 13 |
10 | 2, 8 | opeldm 4807 | . . . . . . . . . . . . 13 |
11 | 9, 10 | sylbi 120 | . . . . . . . . . . . 12 |
12 | 7, 11 | anim12ci 337 | . . . . . . . . . . 11 |
13 | 12 | adantl 275 | . . . . . . . . . 10 |
14 | 13 | exlimivv 1884 | . . . . . . . . 9 |
15 | elxp 4621 | . . . . . . . . 9 | |
16 | elin 3305 | . . . . . . . . 9 | |
17 | 14, 15, 16 | 3imtr4i 200 | . . . . . . . 8 |
18 | ssel 3136 | . . . . . . . 8 | |
19 | 17, 18 | syl5 32 | . . . . . . 7 |
20 | 19 | pm4.71rd 392 | . . . . . 6 |
21 | 20 | exbidv 1813 | . . . . 5 |
22 | rexv 2744 | . . . . 5 | |
23 | df-rex 2450 | . . . . 5 | |
24 | 21, 22, 23 | 3bitr4g 222 | . . . 4 |
25 | eliun 3870 | . . . 4 | |
26 | eliun 3870 | . . . 4 | |
27 | 24, 25, 26 | 3bitr4g 222 | . . 3 |
28 | 27 | eqrdv 2163 | . 2 |
29 | 1, 28 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 cvv 2726 cin 3115 wss 3116 csn 3576 cop 3579 ciun 3866 class class class wbr 3982 cxp 4602 ccnv 4603 cdm 4604 crn 4605 cima 4607 ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |