Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfco2a | Unicode version |
Description: Generalization of dfco2 5110, where can have any value between and . (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfco2a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfco2 5110 | . 2 | |
2 | vex 2733 | . . . . . . . . . . . . . 14 | |
3 | vex 2733 | . . . . . . . . . . . . . . 15 | |
4 | 3 | eliniseg 4981 | . . . . . . . . . . . . . 14 |
5 | 2, 4 | ax-mp 5 | . . . . . . . . . . . . 13 |
6 | 3, 2 | brelrn 4844 | . . . . . . . . . . . . 13 |
7 | 5, 6 | sylbi 120 | . . . . . . . . . . . 12 |
8 | vex 2733 | . . . . . . . . . . . . . 14 | |
9 | 2, 8 | elimasn 4978 | . . . . . . . . . . . . 13 |
10 | 2, 8 | opeldm 4814 | . . . . . . . . . . . . 13 |
11 | 9, 10 | sylbi 120 | . . . . . . . . . . . 12 |
12 | 7, 11 | anim12ci 337 | . . . . . . . . . . 11 |
13 | 12 | adantl 275 | . . . . . . . . . 10 |
14 | 13 | exlimivv 1889 | . . . . . . . . 9 |
15 | elxp 4628 | . . . . . . . . 9 | |
16 | elin 3310 | . . . . . . . . 9 | |
17 | 14, 15, 16 | 3imtr4i 200 | . . . . . . . 8 |
18 | ssel 3141 | . . . . . . . 8 | |
19 | 17, 18 | syl5 32 | . . . . . . 7 |
20 | 19 | pm4.71rd 392 | . . . . . 6 |
21 | 20 | exbidv 1818 | . . . . 5 |
22 | rexv 2748 | . . . . 5 | |
23 | df-rex 2454 | . . . . 5 | |
24 | 21, 22, 23 | 3bitr4g 222 | . . . 4 |
25 | eliun 3877 | . . . 4 | |
26 | eliun 3877 | . . . 4 | |
27 | 24, 25, 26 | 3bitr4g 222 | . . 3 |
28 | 27 | eqrdv 2168 | . 2 |
29 | 1, 28 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 cin 3120 wss 3121 csn 3583 cop 3586 ciun 3873 class class class wbr 3989 cxp 4609 ccnv 4610 cdm 4611 crn 4612 cima 4614 ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |