ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso Unicode version

Theorem ltso 8048
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso  |-  <  Or  RR

Proof of Theorem ltso
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 8047 . . . . 5  |-  ( x  e.  RR  ->  -.  x  <  x )
21adantl 277 . . . 4  |-  ( ( T.  /\  x  e.  RR )  ->  -.  x  <  x )
3 lttr 8044 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( x  <  y  /\  y  <  z )  ->  x  <  z
) )
43adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  < 
y  /\  y  <  z )  ->  x  <  z ) )
52, 4ispod 4316 . . 3  |-  ( T. 
->  <  Po  RR )
65mptru 1372 . 2  |-  <  Po  RR
7 axltwlin 8038 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
x  <  y  ->  ( x  <  z  \/  z  <  y ) ) )
87rgen3 2574 . 2  |-  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) )
9 df-iso 4309 . 2  |-  (  < 
Or  RR  <->  (  <  Po  RR  /\  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) ) ) )
106, 8, 9mpbir2an 943 1  |-  <  Or  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 979   T. wtru 1364    e. wcel 2158   A.wral 2465   class class class wbr 4015    Po wpo 4306    Or wor 4307   RRcr 7823    < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-po 4308  df-iso 4309  df-xp 4644  df-pnf 8007  df-mnf 8008  df-ltxr 8010
This theorem is referenced by:  gtso  8049  ltnsym2  8061  suprlubex  8922  fimaxq  10820
  Copyright terms: Public domain W3C validator