ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso Unicode version

Theorem ltso 7561
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso  |-  <  Or  RR

Proof of Theorem ltso
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 7560 . . . . 5  |-  ( x  e.  RR  ->  -.  x  <  x )
21adantl 271 . . . 4  |-  ( ( T.  /\  x  e.  RR )  ->  -.  x  <  x )
3 lttr 7557 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( x  <  y  /\  y  <  z )  ->  x  <  z
) )
43adantl 271 . . . 4  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  < 
y  /\  y  <  z )  ->  x  <  z ) )
52, 4ispod 4131 . . 3  |-  ( T. 
->  <  Po  RR )
65mptru 1298 . 2  |-  <  Po  RR
7 axltwlin 7552 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
x  <  y  ->  ( x  <  z  \/  z  <  y ) ) )
87rgen3 2460 . 2  |-  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) )
9 df-iso 4124 . 2  |-  (  < 
Or  RR  <->  (  <  Po  RR  /\  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) ) ) )
106, 8, 9mpbir2an 888 1  |-  <  Or  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664    /\ w3a 924   T. wtru 1290    e. wcel 1438   A.wral 2359   class class class wbr 3845    Po wpo 4121    Or wor 4122   RRcr 7347    < clt 7520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-po 4123  df-iso 4124  df-xp 4444  df-pnf 7522  df-mnf 7523  df-ltxr 7525
This theorem is referenced by:  gtso  7562  ltnsym2  7573  suprlubex  8411  fimaxq  10231
  Copyright terms: Public domain W3C validator