ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso Unicode version

Theorem ltso 7976
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso  |-  <  Or  RR

Proof of Theorem ltso
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 7975 . . . . 5  |-  ( x  e.  RR  ->  -.  x  <  x )
21adantl 275 . . . 4  |-  ( ( T.  /\  x  e.  RR )  ->  -.  x  <  x )
3 lttr 7972 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( x  <  y  /\  y  <  z )  ->  x  <  z
) )
43adantl 275 . . . 4  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  < 
y  /\  y  <  z )  ->  x  <  z ) )
52, 4ispod 4282 . . 3  |-  ( T. 
->  <  Po  RR )
65mptru 1352 . 2  |-  <  Po  RR
7 axltwlin 7966 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
x  <  y  ->  ( x  <  z  \/  z  <  y ) ) )
87rgen3 2553 . 2  |-  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) )
9 df-iso 4275 . 2  |-  (  < 
Or  RR  <->  (  <  Po  RR  /\  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) ) ) )
106, 8, 9mpbir2an 932 1  |-  <  Or  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968   T. wtru 1344    e. wcel 2136   A.wral 2444   class class class wbr 3982    Po wpo 4272    Or wor 4273   RRcr 7752    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  gtso  7977  ltnsym2  7989  suprlubex  8847  fimaxq  10740
  Copyright terms: Public domain W3C validator