ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso Unicode version

Theorem ltso 8097
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso  |-  <  Or  RR

Proof of Theorem ltso
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 8096 . . . . 5  |-  ( x  e.  RR  ->  -.  x  <  x )
21adantl 277 . . . 4  |-  ( ( T.  /\  x  e.  RR )  ->  -.  x  <  x )
3 lttr 8093 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( x  <  y  /\  y  <  z )  ->  x  <  z
) )
43adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR ) )  -> 
( ( x  < 
y  /\  y  <  z )  ->  x  <  z ) )
52, 4ispod 4335 . . 3  |-  ( T. 
->  <  Po  RR )
65mptru 1373 . 2  |-  <  Po  RR
7 axltwlin 8087 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
x  <  y  ->  ( x  <  z  \/  z  <  y ) ) )
87rgen3 2581 . 2  |-  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) )
9 df-iso 4328 . 2  |-  (  < 
Or  RR  <->  (  <  Po  RR  /\  A. x  e.  RR  A. y  e.  RR  A. z  e.  RR  ( x  < 
y  ->  ( x  <  z  \/  z  < 
y ) ) ) )
106, 8, 9mpbir2an 944 1  |-  <  Or  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980   T. wtru 1365    e. wcel 2164   A.wral 2472   class class class wbr 4029    Po wpo 4325    Or wor 4326   RRcr 7871    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-po 4327  df-iso 4328  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  gtso  8098  ltnsym2  8110  suprlubex  8971  fimaxq  10898
  Copyright terms: Public domain W3C validator