ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 Unicode version

Theorem rgen2 2583
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )
Assertion
Ref Expression
rgen2  |-  A. x  e.  A  A. y  e.  B  ph
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )
21ralrimiva 2570 . 2  |-  ( x  e.  A  ->  A. y  e.  B  ph )
32rgen 2550 1  |-  A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  rgen3  2584  f1stres  6226  f2ndres  6227  exmidonfinlem  7274  netap  7339  2onetap  7340  2omotaplemap  7342  mpomulf  8035  aptap  8696  divfnzn  9714  1arith  12563  xpsff1o  13053  mgmidmo  13076  nmznsg  13421  isabli  13508  rhmfn  13806  cnsubmlem  14212  cnsubrglem  14214  txuni2  14578  divcnap  14887  abscncf  14907  recncf  14908  imcncf  14909  cjcncf  14910  reefiso  15099  ioocosf1o  15176  sgmf  15308  perfectlem2  15322  2lgslem1b  15416
  Copyright terms: Public domain W3C validator