ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2 Unicode version

Theorem rgen2 2556
Description: Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
Hypothesis
Ref Expression
rgen2.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )
Assertion
Ref Expression
rgen2  |-  A. x  e.  A  A. y  e.  B  ph
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem rgen2
StepHypRef Expression
1 rgen2.1 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )
21ralrimiva 2543 . 2  |-  ( x  e.  A  ->  A. y  e.  B  ph )
32rgen 2523 1  |-  A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  rgen3  2557  f1stres  6138  f2ndres  6139  exmidonfinlem  7170  divfnzn  9580  1arith  12319  mgmidmo  12626  txuni2  13050  divcnap  13349  abscncf  13366  recncf  13367  imcncf  13368  cjcncf  13369  reefiso  13492  ioocosf1o  13569
  Copyright terms: Public domain W3C validator