ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcncntoplem Unicode version

Theorem addcncntoplem 14797
Description: Lemma for addcncntop 14798, subcncntop 14799, and mulcncntop 14800. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
addcn.2  |-  .+  :
( CC  X.  CC )
--> CC
addcn.3  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
Assertion
Ref Expression
addcncntoplem  |-  .+  e.  ( ( J  tX  J )  Cn  J
)
Distinct variable groups:    a, b, c, u, v, y, z, J    .+ , a, b, c, u, v, y, z

Proof of Theorem addcncntoplem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2  |-  .+  :
( CC  X.  CC )
--> CC
2 addcn.3 . . . . 5  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
323coml 1212 . . . 4  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
4 rpmincl 11403 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR ,  <  )  e.  RR+ )
54adantl 277 . . . . . 6  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  -> inf ( {
y ,  z } ,  RR ,  <  )  e.  RR+ )
6 simpll1 1038 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  b  e.  CC )
7 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
8 eqid 2196 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 14765 . . . . . . . . . . . . . 14  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( b ( abs 
o.  -  ) u
)  =  ( abs `  ( b  -  u
) ) )
10 abssub 11266 . . . . . . . . . . . . . 14  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( abs `  (
b  -  u ) )  =  ( abs `  ( u  -  b
) ) )
119, 10eqtrd 2229 . . . . . . . . . . . . 13  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( b ( abs 
o.  -  ) u
)  =  ( abs `  ( u  -  b
) ) )
126, 7, 11syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( b
( abs  o.  -  )
u )  =  ( abs `  ( u  -  b ) ) )
1312breq1d 4043 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( abs `  ( u  -  b
) )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
147, 6subcld 8337 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  -  b )  e.  CC )
1514abscld 11346 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( u  -  b
) )  e.  RR )
16 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  y  e.  RR+ )
1716rpred 9771 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  y  e.  RR )
18 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  z  e.  RR+ )
1918rpred 9771 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  z  e.  RR )
20 ltmininf 11400 . . . . . . . . . . . 12  |-  ( ( ( abs `  (
u  -  b ) )  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( abs `  (
u  -  b ) )  < inf ( {
y ,  z } ,  RR ,  <  )  <-> 
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( u  -  b ) )  <  z ) ) )
2115, 17, 19, 20syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  b ) )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( u  -  b
) )  <  y  /\  ( abs `  (
u  -  b ) )  <  z ) ) )
2213, 21bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( u  -  b ) )  < 
y  /\  ( abs `  ( u  -  b
) )  <  z
) ) )
23 simpl 109 . . . . . . . . . 10  |-  ( ( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( u  -  b ) )  <  z )  -> 
( abs `  (
u  -  b ) )  <  y )
2422, 23biimtrdi 163 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  -> 
( abs `  (
u  -  b ) )  <  y ) )
25 simpll2 1039 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  c  e.  CC )
26 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
278cnmetdval 14765 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( c ( abs 
o.  -  ) v
)  =  ( abs `  ( c  -  v
) ) )
28 abssub 11266 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( abs `  (
c  -  v ) )  =  ( abs `  ( v  -  c
) ) )
2927, 28eqtrd 2229 . . . . . . . . . . . . 13  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( c ( abs 
o.  -  ) v
)  =  ( abs `  ( v  -  c
) ) )
3025, 26, 29syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( c
( abs  o.  -  )
v )  =  ( abs `  ( v  -  c ) ) )
3130breq1d 4043 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( abs `  ( v  -  c
) )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
3226, 25subcld 8337 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( v  -  c )  e.  CC )
3332abscld 11346 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( v  -  c
) )  e.  RR )
34 ltmininf 11400 . . . . . . . . . . . 12  |-  ( ( ( abs `  (
v  -  c ) )  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( abs `  (
v  -  c ) )  < inf ( {
y ,  z } ,  RR ,  <  )  <-> 
( ( abs `  (
v  -  c ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z ) ) )
3533, 17, 19, 34syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  c ) )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( v  -  c
) )  <  y  /\  ( abs `  (
v  -  c ) )  <  z ) ) )
3631, 35bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( v  -  c ) )  < 
y  /\  ( abs `  ( v  -  c
) )  <  z
) ) )
37 simpr 110 . . . . . . . . . 10  |-  ( ( ( abs `  (
v  -  c ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
v  -  c ) )  <  z )
3836, 37biimtrdi 163 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  -> 
( abs `  (
v  -  c ) )  <  z ) )
3924, 38anim12d 335 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( b ( abs 
o.  -  ) u
)  < inf ( {
y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  )
v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z ) ) )
401fovcl 6028 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  .+  c
)  e.  CC )
416, 25, 40syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( b  .+  c )  e.  CC )
421fovcl 6028 . . . . . . . . . . . 12  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  .+  v
)  e.  CC )
4342adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  .+  v )  e.  CC )
448cnmetdval 14765 . . . . . . . . . . . 12  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  =  ( abs `  ( ( b  .+  c )  -  (
u  .+  v )
) ) )
45 abssub 11266 . . . . . . . . . . . 12  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( abs `  (
( b  .+  c
)  -  ( u 
.+  v ) ) )  =  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) ) )
4644, 45eqtrd 2229 . . . . . . . . . . 11  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  =  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) ) )
4741, 43, 46syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  =  ( abs `  ( ( u  .+  v )  -  ( b  .+  c ) ) ) )
4847breq1d 4043 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a  <->  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) )  <  a
) )
4948biimprd 158 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) )
5039, 49imim12d 74 . . . . . . 7  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a )  ->  ( ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs 
o.  -  ) v
)  < inf ( {
y ,  z } ,  RR ,  <  ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) ) )
5150ralimdvva 2566 . . . . . 6  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs 
o.  -  ) v
)  < inf ( {
y ,  z } ,  RR ,  <  ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) ) )
52 breq2 4037 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( b ( abs  o.  -  )
u )  <  x  <->  ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
53 breq2 4037 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( c ( abs  o.  -  )
v )  <  x  <->  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
5452, 53anbi12d 473 . . . . . . . . 9  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( ( b ( abs  o.  -  ) u )  < 
x  /\  ( c
( abs  o.  -  )
v )  <  x
)  <->  ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) ) ) )
5554imbi1d 231 . . . . . . . 8  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )  <->  ( ( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) ) )
56552ralbidv 2521 . . . . . . 7  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) ) )
5756rspcev 2868 . . . . . 6  |-  ( (inf ( { y ,  z } ,  RR ,  <  )  e.  RR+  /\ 
A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
)
585, 51, 57syl6an 1445 . . . . 5  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
5958rexlimdvva 2622 . . . 4  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
603, 59mpd 13 . . 3  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
)
6160rgen3 2584 . 2  |-  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
62 cnxmet 14767 . . 3  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
63 addcncntop.j . . . 4  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
6463, 63, 63txmetcn 14755 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( abs  o.  -  )  e.  ( *Met `  CC ) )  ->  (  .+  e.  ( ( J 
tX  J )  Cn  J )  <->  (  .+  : ( CC  X.  CC ) --> CC  /\  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) ) )
6562, 62, 62, 64mp3an 1348 . 2  |-  (  .+  e.  ( ( J  tX  J )  Cn  J
)  <->  (  .+  :
( CC  X.  CC )
--> CC  /\  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
661, 61, 65mpbir2an 944 1  |-  .+  e.  ( ( J  tX  J )  Cn  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {cpr 3623   class class class wbr 4033    X. cxp 4661    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922  infcinf 7049   CCcc 7877   RRcr 7878    < clt 8061    - cmin 8197   RR+crp 9728   abscabs 11162   *Metcxmet 14092   MetOpencmopn 14097    Cn ccn 14421    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489
This theorem is referenced by:  addcncntop  14798  subcncntop  14799  mulcncntop  14800  mpomulcn  14802
  Copyright terms: Public domain W3C validator