| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcncntoplem | Unicode version | ||
| Description: Lemma for addcncntop 14952, subcncntop 14953, and mulcncntop 14954. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.) |
| Ref | Expression |
|---|---|
| addcncntop.j |
|
| addcn.2 |
|
| addcn.3 |
|
| Ref | Expression |
|---|---|
| addcncntoplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcn.2 |
. 2
| |
| 2 | addcn.3 |
. . . . 5
| |
| 3 | 2 | 3coml 1212 |
. . . 4
|
| 4 | rpmincl 11468 |
. . . . . . 7
| |
| 5 | 4 | adantl 277 |
. . . . . 6
|
| 6 | simpll1 1038 |
. . . . . . . . . . . . 13
| |
| 7 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 8 | eqid 2204 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | cnmetdval 14919 |
. . . . . . . . . . . . . 14
|
| 10 | abssub 11331 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | eqtrd 2237 |
. . . . . . . . . . . . 13
|
| 12 | 6, 7, 11 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 13 | 12 | breq1d 4053 |
. . . . . . . . . . 11
|
| 14 | 7, 6 | subcld 8365 |
. . . . . . . . . . . . 13
|
| 15 | 14 | abscld 11411 |
. . . . . . . . . . . 12
|
| 16 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | rpred 9800 |
. . . . . . . . . . . 12
|
| 18 | simplrr 536 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | rpred 9800 |
. . . . . . . . . . . 12
|
| 20 | ltmininf 11465 |
. . . . . . . . . . . 12
| |
| 21 | 15, 17, 19, 20 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 22 | 13, 21 | bitrd 188 |
. . . . . . . . . 10
|
| 23 | simpl 109 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | biimtrdi 163 |
. . . . . . . . 9
|
| 25 | simpll2 1039 |
. . . . . . . . . . . . 13
| |
| 26 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 27 | 8 | cnmetdval 14919 |
. . . . . . . . . . . . . 14
|
| 28 | abssub 11331 |
. . . . . . . . . . . . . 14
| |
| 29 | 27, 28 | eqtrd 2237 |
. . . . . . . . . . . . 13
|
| 30 | 25, 26, 29 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 31 | 30 | breq1d 4053 |
. . . . . . . . . . 11
|
| 32 | 26, 25 | subcld 8365 |
. . . . . . . . . . . . 13
|
| 33 | 32 | abscld 11411 |
. . . . . . . . . . . 12
|
| 34 | ltmininf 11465 |
. . . . . . . . . . . 12
| |
| 35 | 33, 17, 19, 34 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 36 | 31, 35 | bitrd 188 |
. . . . . . . . . 10
|
| 37 | simpr 110 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | biimtrdi 163 |
. . . . . . . . 9
|
| 39 | 24, 38 | anim12d 335 |
. . . . . . . 8
|
| 40 | 1 | fovcl 6041 |
. . . . . . . . . . . 12
|
| 41 | 6, 25, 40 | syl2anc 411 |
. . . . . . . . . . 11
|
| 42 | 1 | fovcl 6041 |
. . . . . . . . . . . 12
|
| 43 | 42 | adantl 277 |
. . . . . . . . . . 11
|
| 44 | 8 | cnmetdval 14919 |
. . . . . . . . . . . 12
|
| 45 | abssub 11331 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | eqtrd 2237 |
. . . . . . . . . . 11
|
| 47 | 41, 43, 46 | syl2anc 411 |
. . . . . . . . . 10
|
| 48 | 47 | breq1d 4053 |
. . . . . . . . 9
|
| 49 | 48 | biimprd 158 |
. . . . . . . 8
|
| 50 | 39, 49 | imim12d 74 |
. . . . . . 7
|
| 51 | 50 | ralimdvva 2574 |
. . . . . 6
|
| 52 | breq2 4047 |
. . . . . . . . . 10
| |
| 53 | breq2 4047 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | anbi12d 473 |
. . . . . . . . 9
|
| 55 | 54 | imbi1d 231 |
. . . . . . . 8
|
| 56 | 55 | 2ralbidv 2529 |
. . . . . . 7
|
| 57 | 56 | rspcev 2876 |
. . . . . 6
|
| 58 | 5, 51, 57 | syl6an 1453 |
. . . . 5
|
| 59 | 58 | rexlimdvva 2630 |
. . . 4
|
| 60 | 3, 59 | mpd 13 |
. . 3
|
| 61 | 60 | rgen3 2592 |
. 2
|
| 62 | cnxmet 14921 |
. . 3
| |
| 63 | addcncntop.j |
. . . 4
| |
| 64 | 63, 63, 63 | txmetcn 14909 |
. . 3
|
| 65 | 62, 62, 62, 64 | mp3an 1349 |
. 2
|
| 66 | 1, 61, 65 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-map 6727 df-sup 7068 df-inf 7069 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-xneg 9876 df-xadd 9877 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-topgen 13010 df-psmet 14223 df-xmet 14224 df-met 14225 df-bl 14226 df-mopn 14227 df-top 14388 df-topon 14401 df-bases 14433 df-cn 14578 df-cnp 14579 df-tx 14643 |
| This theorem is referenced by: addcncntop 14952 subcncntop 14953 mulcncntop 14954 mpomulcn 14956 |
| Copyright terms: Public domain | W3C validator |