| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcncntoplem | Unicode version | ||
| Description: Lemma for addcncntop 14976, subcncntop 14977, and mulcncntop 14978. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.) |
| Ref | Expression |
|---|---|
| addcncntop.j |
|
| addcn.2 |
|
| addcn.3 |
|
| Ref | Expression |
|---|---|
| addcncntoplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcn.2 |
. 2
| |
| 2 | addcn.3 |
. . . . 5
| |
| 3 | 2 | 3coml 1212 |
. . . 4
|
| 4 | rpmincl 11491 |
. . . . . . 7
| |
| 5 | 4 | adantl 277 |
. . . . . 6
|
| 6 | simpll1 1038 |
. . . . . . . . . . . . 13
| |
| 7 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 8 | eqid 2204 |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | cnmetdval 14943 |
. . . . . . . . . . . . . 14
|
| 10 | abssub 11354 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | eqtrd 2237 |
. . . . . . . . . . . . 13
|
| 12 | 6, 7, 11 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 13 | 12 | breq1d 4053 |
. . . . . . . . . . 11
|
| 14 | 7, 6 | subcld 8382 |
. . . . . . . . . . . . 13
|
| 15 | 14 | abscld 11434 |
. . . . . . . . . . . 12
|
| 16 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | rpred 9817 |
. . . . . . . . . . . 12
|
| 18 | simplrr 536 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | rpred 9817 |
. . . . . . . . . . . 12
|
| 20 | ltmininf 11488 |
. . . . . . . . . . . 12
| |
| 21 | 15, 17, 19, 20 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 22 | 13, 21 | bitrd 188 |
. . . . . . . . . 10
|
| 23 | simpl 109 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | biimtrdi 163 |
. . . . . . . . 9
|
| 25 | simpll2 1039 |
. . . . . . . . . . . . 13
| |
| 26 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 27 | 8 | cnmetdval 14943 |
. . . . . . . . . . . . . 14
|
| 28 | abssub 11354 |
. . . . . . . . . . . . . 14
| |
| 29 | 27, 28 | eqtrd 2237 |
. . . . . . . . . . . . 13
|
| 30 | 25, 26, 29 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 31 | 30 | breq1d 4053 |
. . . . . . . . . . 11
|
| 32 | 26, 25 | subcld 8382 |
. . . . . . . . . . . . 13
|
| 33 | 32 | abscld 11434 |
. . . . . . . . . . . 12
|
| 34 | ltmininf 11488 |
. . . . . . . . . . . 12
| |
| 35 | 33, 17, 19, 34 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 36 | 31, 35 | bitrd 188 |
. . . . . . . . . 10
|
| 37 | simpr 110 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | biimtrdi 163 |
. . . . . . . . 9
|
| 39 | 24, 38 | anim12d 335 |
. . . . . . . 8
|
| 40 | 1 | fovcl 6050 |
. . . . . . . . . . . 12
|
| 41 | 6, 25, 40 | syl2anc 411 |
. . . . . . . . . . 11
|
| 42 | 1 | fovcl 6050 |
. . . . . . . . . . . 12
|
| 43 | 42 | adantl 277 |
. . . . . . . . . . 11
|
| 44 | 8 | cnmetdval 14943 |
. . . . . . . . . . . 12
|
| 45 | abssub 11354 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | eqtrd 2237 |
. . . . . . . . . . 11
|
| 47 | 41, 43, 46 | syl2anc 411 |
. . . . . . . . . 10
|
| 48 | 47 | breq1d 4053 |
. . . . . . . . 9
|
| 49 | 48 | biimprd 158 |
. . . . . . . 8
|
| 50 | 39, 49 | imim12d 74 |
. . . . . . 7
|
| 51 | 50 | ralimdvva 2574 |
. . . . . 6
|
| 52 | breq2 4047 |
. . . . . . . . . 10
| |
| 53 | breq2 4047 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | anbi12d 473 |
. . . . . . . . 9
|
| 55 | 54 | imbi1d 231 |
. . . . . . . 8
|
| 56 | 55 | 2ralbidv 2529 |
. . . . . . 7
|
| 57 | 56 | rspcev 2876 |
. . . . . 6
|
| 58 | 5, 51, 57 | syl6an 1453 |
. . . . 5
|
| 59 | 58 | rexlimdvva 2630 |
. . . 4
|
| 60 | 3, 59 | mpd 13 |
. . 3
|
| 61 | 60 | rgen3 2592 |
. 2
|
| 62 | cnxmet 14945 |
. . 3
| |
| 63 | addcncntop.j |
. . . 4
| |
| 64 | 63, 63, 63 | txmetcn 14933 |
. . 3
|
| 65 | 62, 62, 62, 64 | mp3an 1349 |
. 2
|
| 66 | 1, 61, 65 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-map 6736 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-topgen 13034 df-psmet 14247 df-xmet 14248 df-met 14249 df-bl 14250 df-mopn 14251 df-top 14412 df-topon 14425 df-bases 14457 df-cn 14602 df-cnp 14603 df-tx 14667 |
| This theorem is referenced by: addcncntop 14976 subcncntop 14977 mulcncntop 14978 mpomulcn 14980 |
| Copyright terms: Public domain | W3C validator |