ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcncntoplem Unicode version

Theorem addcncntoplem 12615
Description: Lemma for addcncntop 12616, subcncntop 12617, and mulcncntop 12618. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
addcn.2  |-  .+  :
( CC  X.  CC )
--> CC
addcn.3  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
Assertion
Ref Expression
addcncntoplem  |-  .+  e.  ( ( J  tX  J )  Cn  J
)
Distinct variable groups:    a, b, c, u, v, y, z, J    .+ , a, b, c, u, v, y, z

Proof of Theorem addcncntoplem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2  |-  .+  :
( CC  X.  CC )
--> CC
2 addcn.3 . . . . 5  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
323coml 1171 . . . 4  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a ) )
4 rpmincl 10949 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR ,  <  )  e.  RR+ )
54adantl 273 . . . . . 6  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  -> inf ( {
y ,  z } ,  RR ,  <  )  e.  RR+ )
6 simpll1 1003 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  b  e.  CC )
7 simprl 503 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
8 eqid 2115 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 12593 . . . . . . . . . . . . . 14  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( b ( abs 
o.  -  ) u
)  =  ( abs `  ( b  -  u
) ) )
10 abssub 10813 . . . . . . . . . . . . . 14  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( abs `  (
b  -  u ) )  =  ( abs `  ( u  -  b
) ) )
119, 10eqtrd 2148 . . . . . . . . . . . . 13  |-  ( ( b  e.  CC  /\  u  e.  CC )  ->  ( b ( abs 
o.  -  ) u
)  =  ( abs `  ( u  -  b
) ) )
126, 7, 11syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( b
( abs  o.  -  )
u )  =  ( abs `  ( u  -  b ) ) )
1312breq1d 3907 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( abs `  ( u  -  b
) )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
147, 6subcld 8037 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  -  b )  e.  CC )
1514abscld 10893 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( u  -  b
) )  e.  RR )
16 simplrl 507 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  y  e.  RR+ )
1716rpred 9429 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  y  e.  RR )
18 simplrr 508 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  z  e.  RR+ )
1918rpred 9429 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  z  e.  RR )
20 ltmininf 10946 . . . . . . . . . . . 12  |-  ( ( ( abs `  (
u  -  b ) )  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( abs `  (
u  -  b ) )  < inf ( {
y ,  z } ,  RR ,  <  )  <-> 
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( u  -  b ) )  <  z ) ) )
2115, 17, 19, 20syl3anc 1199 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  b ) )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( u  -  b
) )  <  y  /\  ( abs `  (
u  -  b ) )  <  z ) ) )
2213, 21bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( u  -  b ) )  < 
y  /\  ( abs `  ( u  -  b
) )  <  z
) ) )
23 simpl 108 . . . . . . . . . 10  |-  ( ( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( u  -  b ) )  <  z )  -> 
( abs `  (
u  -  b ) )  <  y )
2422, 23syl6bi 162 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  -> 
( abs `  (
u  -  b ) )  <  y ) )
25 simpll2 1004 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  c  e.  CC )
26 simprr 504 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
278cnmetdval 12593 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( c ( abs 
o.  -  ) v
)  =  ( abs `  ( c  -  v
) ) )
28 abssub 10813 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( abs `  (
c  -  v ) )  =  ( abs `  ( v  -  c
) ) )
2927, 28eqtrd 2148 . . . . . . . . . . . . 13  |-  ( ( c  e.  CC  /\  v  e.  CC )  ->  ( c ( abs 
o.  -  ) v
)  =  ( abs `  ( v  -  c
) ) )
3025, 26, 29syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( c
( abs  o.  -  )
v )  =  ( abs `  ( v  -  c ) ) )
3130breq1d 3907 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( abs `  ( v  -  c
) )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
3226, 25subcld 8037 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( v  -  c )  e.  CC )
3332abscld 10893 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( v  -  c
) )  e.  RR )
34 ltmininf 10946 . . . . . . . . . . . 12  |-  ( ( ( abs `  (
v  -  c ) )  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( abs `  (
v  -  c ) )  < inf ( {
y ,  z } ,  RR ,  <  )  <-> 
( ( abs `  (
v  -  c ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z ) ) )
3533, 17, 19, 34syl3anc 1199 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  c ) )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( v  -  c
) )  <  y  /\  ( abs `  (
v  -  c ) )  <  z ) ) )
3631, 35bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  <->  ( ( abs `  ( v  -  c ) )  < 
y  /\  ( abs `  ( v  -  c
) )  <  z
) ) )
37 simpr 109 . . . . . . . . . 10  |-  ( ( ( abs `  (
v  -  c ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
v  -  c ) )  <  z )
3836, 37syl6bi 162 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  )  -> 
( abs `  (
v  -  c ) )  <  z ) )
3924, 38anim12d 331 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( b ( abs 
o.  -  ) u
)  < inf ( {
y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  )
v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z ) ) )
401fovcl 5842 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  .+  c
)  e.  CC )
416, 25, 40syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( b  .+  c )  e.  CC )
421fovcl 5842 . . . . . . . . . . . 12  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  .+  v
)  e.  CC )
4342adantl 273 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  .+  v )  e.  CC )
448cnmetdval 12593 . . . . . . . . . . . 12  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  =  ( abs `  ( ( b  .+  c )  -  (
u  .+  v )
) ) )
45 abssub 10813 . . . . . . . . . . . 12  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( abs `  (
( b  .+  c
)  -  ( u 
.+  v ) ) )  =  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) ) )
4644, 45eqtrd 2148 . . . . . . . . . . 11  |-  ( ( ( b  .+  c
)  e.  CC  /\  ( u  .+  v )  e.  CC )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  =  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) ) )
4741, 43, 46syl2anc 406 . . . . . . . . . 10  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  =  ( abs `  ( ( u  .+  v )  -  ( b  .+  c ) ) ) )
4847breq1d 3907 . . . . . . . . 9  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a  <->  ( abs `  ( ( u  .+  v )  -  (
b  .+  c )
) )  <  a
) )
4948biimprd 157 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) )
5039, 49imim12d 74 . . . . . . 7  |-  ( ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  (
u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  <  z )  -> 
( abs `  (
( u  .+  v
)  -  ( b 
.+  c ) ) )  <  a )  ->  ( ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs 
o.  -  ) v
)  < inf ( {
y ,  z } ,  RR ,  <  ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) ) )
5150ralimdvva 2476 . . . . . 6  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs 
o.  -  ) v
)  < inf ( {
y ,  z } ,  RR ,  <  ) )  ->  ( (
b  .+  c )
( abs  o.  -  )
( u  .+  v
) )  <  a
) ) )
52 breq2 3901 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( b ( abs  o.  -  )
u )  <  x  <->  ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
53 breq2 3901 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( c ( abs  o.  -  )
v )  <  x  <->  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) ) )
5452, 53anbi12d 462 . . . . . . . . 9  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( ( b ( abs  o.  -  ) u )  < 
x  /\  ( c
( abs  o.  -  )
v )  <  x
)  <->  ( ( b ( abs  o.  -  ) u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) ) ) )
5554imbi1d 230 . . . . . . . 8  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )  <->  ( ( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) ) )
56552ralbidv 2434 . . . . . . 7  |-  ( x  = inf ( { y ,  z } ,  RR ,  <  )  -> 
( A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) ) )
5756rspcev 2761 . . . . . 6  |-  ( (inf ( { y ,  z } ,  RR ,  <  )  e.  RR+  /\ 
A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  < inf ( { y ,  z } ,  RR ,  <  )  /\  ( c ( abs  o.  -  ) v )  < inf ( { y ,  z } ,  RR ,  <  ) )  ->  (
( b  .+  c
) ( abs  o.  -  ) ( u 
.+  v ) )  <  a ) )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
)
585, 51, 57syl6an 1393 . . . . 5  |-  ( ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
5958rexlimdvva 2532 . . . 4  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  y  /\  ( abs `  ( v  -  c ) )  < 
z )  ->  ( abs `  ( ( u 
.+  v )  -  ( b  .+  c
) ) )  < 
a )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
603, 59mpd 13 . . 3  |-  ( ( b  e.  CC  /\  c  e.  CC  /\  a  e.  RR+ )  ->  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( b ( abs  o.  -  ) u )  <  x  /\  (
c ( abs  o.  -  ) v )  <  x )  -> 
( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
)
6160rgen3 2494 . 2  |-  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
62 cnxmet 12595 . . 3  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
63 addcncntop.j . . . 4  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
6463, 63, 63txmetcn 12583 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( abs  o.  -  )  e.  ( *Met `  CC ) )  ->  (  .+  e.  ( ( J 
tX  J )  Cn  J )  <->  (  .+  : ( CC  X.  CC ) --> CC  /\  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) ) )
6562, 62, 62, 64mp3an 1298 . 2  |-  (  .+  e.  ( ( J  tX  J )  Cn  J
)  <->  (  .+  :
( CC  X.  CC )
--> CC  /\  A. b  e.  CC  A. c  e.  CC  A. a  e.  RR+  E. x  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( b ( abs  o.  -  )
u )  <  x  /\  ( c ( abs 
o.  -  ) v
)  <  x )  ->  ( ( b  .+  c ) ( abs 
o.  -  ) (
u  .+  v )
)  <  a )
) )
661, 61, 65mpbir2an 909 1  |-  .+  e.  ( ( J  tX  J )  Cn  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   {cpr 3496   class class class wbr 3897    X. cxp 4505    o. ccom 4511   -->wf 5087   ` cfv 5091  (class class class)co 5740  infcinf 6836   CCcc 7582   RRcr 7583    < clt 7764    - cmin 7897   RR+crp 9390   abscabs 10709   *Metcxmet 12044   MetOpencmopn 12049    Cn ccn 12249    tX ctx 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-cn 12252  df-cnp 12253  df-tx 12317
This theorem is referenced by:  addcncntop  12616  subcncntop  12617  mulcncntop  12618
  Copyright terms: Public domain W3C validator