![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.21bi | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
r19.21bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
r19.21bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21bi.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-ral 2365 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 121 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | 19.21bi 1496 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | imp 123 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-4 1446 |
This theorem depends on definitions: df-bi 116 df-ral 2365 |
This theorem is referenced by: rspec2 2463 rspec3 2464 r19.21be 2465 frind 4188 wepo 4195 wetrep 4196 ordelord 4217 ralxfr2d 4299 rexxfr2d 4300 funfveu 5331 f1oresrab 5477 isoselem 5613 disjxp1 6015 tfrlemisucaccv 6104 tfr1onlemsucaccv 6120 tfrcllemsucaccv 6133 xpf1o 6614 fimax2gtrilemstep 6670 supisoti 6759 exmidomni 6852 prcdnql 7097 prcunqu 7098 prdisj 7105 caucvgsrlembound 7393 caucvgsrlemoffgt1 7398 exbtwnzlemex 9715 monoord2 9959 iseqf1olemqk 9977 seq3f1olemqsumk 9982 caucvgrelemcau 10467 fimaxre2 10712 climrecvg1n 10791 zisum 10828 fisum 10832 isumss2 10839 fisumser 10844 sumpr 10861 sumtp 10862 fsum2dlemstep 10882 fsumiun 10925 isumlessdc 10944 bezoutlemstep 11318 |
Copyright terms: Public domain | W3C validator |