ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsosr Unicode version

Theorem ltsosr 7460
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
ltsosr  |-  <R  Or  R.

Proof of Theorem ltsosr
Dummy variables  a  b  c  d  e  f  r  s  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltposr 7459 . 2  |-  <R  Po  R.
2 df-nr 7423 . . . 4  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 breq1 3878 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  <->  x  <R  [
<. c ,  d >. ]  ~R  ) )
4 breq1 3878 . . . . . 6  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  <->  x  <R  [
<. e ,  f >. ]  ~R  ) )
54orbi1d 746 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) 
<->  ( x  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) )
63, 5imbi12d 233 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  ->  ( [ <. a ,  b
>. ]  ~R  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) )  <->  ( x  <R  [ <. c ,  d
>. ]  ~R  ->  (
x  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) ) )
7 breq2 3879 . . . . 5  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( x  <R  [ <. c ,  d >. ]  ~R  <->  x 
<R  y ) )
8 breq2 3879 . . . . . 6  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  <->  [ <. e ,  f >. ]  ~R  <R  y ) )
98orbi2d 745 . . . . 5  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  )  <->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )
) )
107, 9imbi12d 233 . . . 4  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( ( x  <R  [
<. c ,  d >. ]  ~R  ->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) )  <->  ( x  <R  y  ->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )
) ) )
11 breq2 3879 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( x  <R  [ <. e ,  f >. ]  ~R  <->  x 
<R  z ) )
12 breq1 3878 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( [ <. e ,  f >. ]  ~R  <R  y  <->  z  <R  y
) )
1311, 12orbi12d 748 . . . . 5  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )  <->  ( x  <R  z  \/  z  <R 
y ) ) )
1413imbi2d 229 . . . 4  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( ( x  <R  y  ->  ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y ) )  <->  ( x  <R  y  ->  ( x  <R  z  \/  z  <R 
y ) ) ) )
15 simp1l 973 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  a  e.  P. )
16 simp3r 978 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  f  e.  P. )
17 addclpr 7246 . . . . . . . . 9  |-  ( ( a  e.  P.  /\  f  e.  P. )  ->  ( a  +P.  f
)  e.  P. )
1815, 16, 17syl2anc 406 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( a  +P.  f )  e.  P. )
19 simp2r 976 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  d  e.  P. )
20 addclpr 7246 . . . . . . . 8  |-  ( ( ( a  +P.  f
)  e.  P.  /\  d  e.  P. )  ->  ( ( a  +P.  f )  +P.  d
)  e.  P. )
2118, 19, 20syl2anc 406 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  +P.  d )  e.  P. )
22 simp2l 975 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  c  e.  P. )
23 addclpr 7246 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  c  e.  P. )  ->  ( f  +P.  c
)  e.  P. )
2416, 22, 23syl2anc 406 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  c )  e.  P. )
25 simp1r 974 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  b  e.  P. )
26 addclpr 7246 . . . . . . . 8  |-  ( ( ( f  +P.  c
)  e.  P.  /\  b  e.  P. )  ->  ( ( f  +P.  c )  +P.  b
)  e.  P. )
2724, 25, 26syl2anc 406 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  c )  +P.  b )  e.  P. )
28 simp3l 977 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  e  e.  P. )
29 addclpr 7246 . . . . . . . . 9  |-  ( ( b  e.  P.  /\  e  e.  P. )  ->  ( b  +P.  e
)  e.  P. )
3025, 28, 29syl2anc 406 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  e )  e.  P. )
31 addclpr 7246 . . . . . . . 8  |-  ( ( ( b  +P.  e
)  e.  P.  /\  d  e.  P. )  ->  ( ( b  +P.  e )  +P.  d
)  e.  P. )
3230, 19, 31syl2anc 406 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  e.  P. )
33 ltsopr 7305 . . . . . . . 8  |-  <P  Or  P.
34 sowlin 4180 . . . . . . . 8  |-  ( ( 
<P  Or  P.  /\  (
( ( a  +P.  f )  +P.  d
)  e.  P.  /\  ( ( f  +P.  c )  +P.  b
)  e.  P.  /\  ( ( b  +P.  e )  +P.  d
)  e.  P. )
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
3533, 34mpan 418 . . . . . . 7  |-  ( ( ( ( a  +P.  f )  +P.  d
)  e.  P.  /\  ( ( f  +P.  c )  +P.  b
)  e.  P.  /\  ( ( b  +P.  e )  +P.  d
)  e.  P. )  ->  ( ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )  ->  ( ( ( a  +P.  f )  +P.  d )  <P  (
( b  +P.  e
)  +P.  d )  \/  ( ( b  +P.  e )  +P.  d
)  <P  ( ( f  +P.  c )  +P.  b ) ) ) )
3621, 27, 32, 35syl3anc 1184 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
37 addclpr 7246 . . . . . . . . 9  |-  ( ( a  e.  P.  /\  d  e.  P. )  ->  ( a  +P.  d
)  e.  P. )
3815, 19, 37syl2anc 406 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( a  +P.  d )  e.  P. )
39 addclpr 7246 . . . . . . . . 9  |-  ( ( b  e.  P.  /\  c  e.  P. )  ->  ( b  +P.  c
)  e.  P. )
4025, 22, 39syl2anc 406 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  c )  e.  P. )
41 ltaprg 7328 . . . . . . . 8  |-  ( ( ( a  +P.  d
)  e.  P.  /\  ( b  +P.  c
)  e.  P.  /\  f  e.  P. )  ->  ( ( a  +P.  d )  <P  (
b  +P.  c )  <->  ( f  +P.  ( a  +P.  d ) ) 
<P  ( f  +P.  (
b  +P.  c )
) ) )
4238, 40, 16, 41syl3anc 1184 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  <->  ( f  +P.  ( a  +P.  d
) )  <P  (
f  +P.  ( b  +P.  c ) ) ) )
43 addcomprg 7287 . . . . . . . . . . 11  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
4443adantl 273 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
45 addassprg 7288 . . . . . . . . . . 11  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
4645adantl 273 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
4716, 15, 19, 44, 46caov12d 5884 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( a  +P.  d
) )  =  ( a  +P.  ( f  +P.  d ) ) )
4846, 15, 16, 19caovassd 5862 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  +P.  d )  =  ( a  +P.  ( f  +P.  d ) ) )
4947, 48eqtr4d 2135 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( a  +P.  d
) )  =  ( ( a  +P.  f
)  +P.  d )
)
5046, 16, 25, 22caovassd 5862 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  b )  +P.  c )  =  ( f  +P.  ( b  +P.  c ) ) )
5116, 25, 22, 44, 46caov32d 5883 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  b )  +P.  c )  =  ( ( f  +P.  c
)  +P.  b )
)
5250, 51eqtr3d 2134 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( b  +P.  c
) )  =  ( ( f  +P.  c
)  +P.  b )
)
5349, 52breq12d 3888 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  ( a  +P.  d ) )  <P 
( f  +P.  (
b  +P.  c )
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
5442, 53bitrd 187 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
55 ltaprg 7328 . . . . . . . . 9  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
5655adantl 273 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
5756, 18, 30, 19, 44caovord2d 5872 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  <P  ( b  +P.  e
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( b  +P.  e
)  +P.  d )
) )
58 addclpr 7246 . . . . . . . . . 10  |-  ( ( e  e.  P.  /\  d  e.  P. )  ->  ( e  +P.  d
)  e.  P. )
5928, 19, 58syl2anc 406 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( e  +P.  d )  e.  P. )
6056, 59, 24, 25, 44caovord2d 5872 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
e  +P.  d )  <P  ( f  +P.  c
)  <->  ( ( e  +P.  d )  +P.  b )  <P  (
( f  +P.  c
)  +P.  b )
) )
6146, 25, 28, 19caovassd 5862 . . . . . . . . . 10  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  =  ( b  +P.  ( e  +P.  d ) ) )
6244, 25, 59caovcomd 5859 . . . . . . . . . 10  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  ( e  +P.  d
) )  =  ( ( e  +P.  d
)  +P.  b )
)
6361, 62eqtrd 2132 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  =  ( ( e  +P.  d
)  +P.  b )
)
6463breq1d 3885 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( b  +P.  e
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  <->  ( ( e  +P.  d )  +P.  b )  <P  (
( f  +P.  c
)  +P.  b )
) )
6560, 64bitr4d 190 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
e  +P.  d )  <P  ( f  +P.  c
)  <->  ( ( b  +P.  e )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
6657, 65orbi12d 748 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( a  +P.  f
)  <P  ( b  +P.  e )  \/  (
e  +P.  d )  <P  ( f  +P.  c
) )  <->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
6736, 54, 663imtr4d 202 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  ->  ( (
a  +P.  f )  <P  ( b  +P.  e
)  \/  ( e  +P.  d )  <P 
( f  +P.  c
) ) ) )
68 ltsrprg 7443 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( a  +P.  d ) 
<P  ( b  +P.  c
) ) )
69683adant3 969 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( a  +P.  d ) 
<P  ( b  +P.  c
) ) )
70 ltsrprg 7443 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f >. ]  ~R  <->  ( a  +P.  f ) 
<P  ( b  +P.  e
) ) )
71703adant2 968 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f >. ]  ~R  <->  ( a  +P.  f ) 
<P  ( b  +P.  e
) ) )
72 ltsrprg 7443 . . . . . . . 8  |-  ( ( ( e  e.  P.  /\  f  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
7372ancoms 266 . . . . . . 7  |-  ( ( ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
74733adant1 967 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
7571, 74orbi12d 748 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( ( [ <. a ,  b
>. ]  ~R  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) 
<->  ( ( a  +P.  f )  <P  (
b  +P.  e )  \/  ( e  +P.  d
)  <P  ( f  +P.  c ) ) ) )
7667, 69, 753imtr4d 202 . . . 4  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) )
772, 6, 10, 14, 763ecoptocl 6448 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
x  <R  y  ->  (
x  <R  z  \/  z  <R  y ) ) )
7877rgen3 2478 . 2  |-  A. x  e.  R.  A. y  e. 
R.  A. z  e.  R.  ( x  <R  y  -> 
( x  <R  z  \/  z  <R  y ) )
79 df-iso 4157 . 2  |-  (  <R  Or  R.  <->  (  <R  Po  R.  /\ 
A. x  e.  R.  A. y  e.  R.  A. z  e.  R.  (
x  <R  y  ->  (
x  <R  z  \/  z  <R  y ) ) ) )
801, 78, 79mpbir2an 894 1  |-  <R  Or  R.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    /\ w3a 930    = wceq 1299    e. wcel 1448   A.wral 2375   <.cop 3477   class class class wbr 3875    Po wpo 4154    Or wor 4155  (class class class)co 5706   [cec 6357   P.cnp 7000    +P. cpp 7002    <P cltp 7004    ~R cer 7005   R.cnr 7006    <R cltr 7012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-iltp 7179  df-enr 7422  df-nr 7423  df-ltr 7426
This theorem is referenced by:  1ne0sr  7462  addgt0sr  7471  caucvgsrlemcl  7484  caucvgsrlemfv  7486  axpre-ltirr  7567  axpre-ltwlin  7568  axpre-lttrn  7569
  Copyright terms: Public domain W3C validator