ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsosr Unicode version

Theorem ltsosr 7897
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
ltsosr  |-  <R  Or  R.

Proof of Theorem ltsosr
Dummy variables  a  b  c  d  e  f  r  s  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltposr 7896 . 2  |-  <R  Po  R.
2 df-nr 7860 . . . 4  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 breq1 4054 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  <->  x  <R  [
<. c ,  d >. ]  ~R  ) )
4 breq1 4054 . . . . . 6  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  <->  x  <R  [
<. e ,  f >. ]  ~R  ) )
54orbi1d 793 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) 
<->  ( x  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) )
63, 5imbi12d 234 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  x  -> 
( ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  ->  ( [ <. a ,  b
>. ]  ~R  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) )  <->  ( x  <R  [ <. c ,  d
>. ]  ~R  ->  (
x  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) ) )
7 breq2 4055 . . . . 5  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( x  <R  [ <. c ,  d >. ]  ~R  <->  x 
<R  y ) )
8 breq2 4055 . . . . . 6  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  <->  [ <. e ,  f >. ]  ~R  <R  y ) )
98orbi2d 792 . . . . 5  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d
>. ]  ~R  )  <->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )
) )
107, 9imbi12d 234 . . . 4  |-  ( [
<. c ,  d >. ]  ~R  =  y  -> 
( ( x  <R  [
<. c ,  d >. ]  ~R  ->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) )  <->  ( x  <R  y  ->  ( x  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )
) ) )
11 breq2 4055 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( x  <R  [ <. e ,  f >. ]  ~R  <->  x 
<R  z ) )
12 breq1 4054 . . . . . 6  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( [ <. e ,  f >. ]  ~R  <R  y  <->  z  <R  y
) )
1311, 12orbi12d 795 . . . . 5  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y )  <->  ( x  <R  z  \/  z  <R 
y ) ) )
1413imbi2d 230 . . . 4  |-  ( [
<. e ,  f >. ]  ~R  =  z  -> 
( ( x  <R  y  ->  ( x  <R  [
<. e ,  f >. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  y ) )  <->  ( x  <R  y  ->  ( x  <R  z  \/  z  <R 
y ) ) ) )
15 simp1l 1024 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  a  e.  P. )
16 simp3r 1029 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  f  e.  P. )
17 addclpr 7670 . . . . . . . . 9  |-  ( ( a  e.  P.  /\  f  e.  P. )  ->  ( a  +P.  f
)  e.  P. )
1815, 16, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( a  +P.  f )  e.  P. )
19 simp2r 1027 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  d  e.  P. )
20 addclpr 7670 . . . . . . . 8  |-  ( ( ( a  +P.  f
)  e.  P.  /\  d  e.  P. )  ->  ( ( a  +P.  f )  +P.  d
)  e.  P. )
2118, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  +P.  d )  e.  P. )
22 simp2l 1026 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  c  e.  P. )
23 addclpr 7670 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  c  e.  P. )  ->  ( f  +P.  c
)  e.  P. )
2416, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  c )  e.  P. )
25 simp1r 1025 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  b  e.  P. )
26 addclpr 7670 . . . . . . . 8  |-  ( ( ( f  +P.  c
)  e.  P.  /\  b  e.  P. )  ->  ( ( f  +P.  c )  +P.  b
)  e.  P. )
2724, 25, 26syl2anc 411 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  c )  +P.  b )  e.  P. )
28 simp3l 1028 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  e  e.  P. )
29 addclpr 7670 . . . . . . . . 9  |-  ( ( b  e.  P.  /\  e  e.  P. )  ->  ( b  +P.  e
)  e.  P. )
3025, 28, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  e )  e.  P. )
31 addclpr 7670 . . . . . . . 8  |-  ( ( ( b  +P.  e
)  e.  P.  /\  d  e.  P. )  ->  ( ( b  +P.  e )  +P.  d
)  e.  P. )
3230, 19, 31syl2anc 411 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  e.  P. )
33 ltsopr 7729 . . . . . . . 8  |-  <P  Or  P.
34 sowlin 4375 . . . . . . . 8  |-  ( ( 
<P  Or  P.  /\  (
( ( a  +P.  f )  +P.  d
)  e.  P.  /\  ( ( f  +P.  c )  +P.  b
)  e.  P.  /\  ( ( b  +P.  e )  +P.  d
)  e.  P. )
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
3533, 34mpan 424 . . . . . . 7  |-  ( ( ( ( a  +P.  f )  +P.  d
)  e.  P.  /\  ( ( f  +P.  c )  +P.  b
)  e.  P.  /\  ( ( b  +P.  e )  +P.  d
)  e.  P. )  ->  ( ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )  ->  ( ( ( a  +P.  f )  +P.  d )  <P  (
( b  +P.  e
)  +P.  d )  \/  ( ( b  +P.  e )  +P.  d
)  <P  ( ( f  +P.  c )  +P.  b ) ) ) )
3621, 27, 32, 35syl3anc 1250 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  ->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
37 addclpr 7670 . . . . . . . . 9  |-  ( ( a  e.  P.  /\  d  e.  P. )  ->  ( a  +P.  d
)  e.  P. )
3815, 19, 37syl2anc 411 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( a  +P.  d )  e.  P. )
39 addclpr 7670 . . . . . . . . 9  |-  ( ( b  e.  P.  /\  c  e.  P. )  ->  ( b  +P.  c
)  e.  P. )
4025, 22, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  c )  e.  P. )
41 ltaprg 7752 . . . . . . . 8  |-  ( ( ( a  +P.  d
)  e.  P.  /\  ( b  +P.  c
)  e.  P.  /\  f  e.  P. )  ->  ( ( a  +P.  d )  <P  (
b  +P.  c )  <->  ( f  +P.  ( a  +P.  d ) ) 
<P  ( f  +P.  (
b  +P.  c )
) ) )
4238, 40, 16, 41syl3anc 1250 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  <->  ( f  +P.  ( a  +P.  d
) )  <P  (
f  +P.  ( b  +P.  c ) ) ) )
43 addcomprg 7711 . . . . . . . . . . 11  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
4443adantl 277 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
45 addassprg 7712 . . . . . . . . . . 11  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
4645adantl 277 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
4716, 15, 19, 44, 46caov12d 6141 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( a  +P.  d
) )  =  ( a  +P.  ( f  +P.  d ) ) )
4846, 15, 16, 19caovassd 6119 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  +P.  d )  =  ( a  +P.  ( f  +P.  d ) ) )
4947, 48eqtr4d 2242 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( a  +P.  d
) )  =  ( ( a  +P.  f
)  +P.  d )
)
5046, 16, 25, 22caovassd 6119 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  b )  +P.  c )  =  ( f  +P.  ( b  +P.  c ) ) )
5116, 25, 22, 44, 46caov32d 6140 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  b )  +P.  c )  =  ( ( f  +P.  c
)  +P.  b )
)
5250, 51eqtr3d 2241 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( f  +P.  ( b  +P.  c
) )  =  ( ( f  +P.  c
)  +P.  b )
)
5349, 52breq12d 4064 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
f  +P.  ( a  +P.  d ) )  <P 
( f  +P.  (
b  +P.  c )
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
5442, 53bitrd 188 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
55 ltaprg 7752 . . . . . . . . 9  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
5655adantl 277 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  (
c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
5756, 18, 30, 19, 44caovord2d 6129 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  f )  <P  ( b  +P.  e
)  <->  ( ( a  +P.  f )  +P.  d )  <P  (
( b  +P.  e
)  +P.  d )
) )
58 addclpr 7670 . . . . . . . . . 10  |-  ( ( e  e.  P.  /\  d  e.  P. )  ->  ( e  +P.  d
)  e.  P. )
5928, 19, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( e  +P.  d )  e.  P. )
6056, 59, 24, 25, 44caovord2d 6129 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
e  +P.  d )  <P  ( f  +P.  c
)  <->  ( ( e  +P.  d )  +P.  b )  <P  (
( f  +P.  c
)  +P.  b )
) )
6146, 25, 28, 19caovassd 6119 . . . . . . . . . 10  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  =  ( b  +P.  ( e  +P.  d ) ) )
6244, 25, 59caovcomd 6116 . . . . . . . . . 10  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( b  +P.  ( e  +P.  d
) )  =  ( ( e  +P.  d
)  +P.  b )
)
6361, 62eqtrd 2239 . . . . . . . . 9  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
b  +P.  e )  +P.  d )  =  ( ( e  +P.  d
)  +P.  b )
)
6463breq1d 4061 . . . . . . . 8  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( b  +P.  e
)  +P.  d )  <P  ( ( f  +P.  c )  +P.  b
)  <->  ( ( e  +P.  d )  +P.  b )  <P  (
( f  +P.  c
)  +P.  b )
) )
6560, 64bitr4d 191 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
e  +P.  d )  <P  ( f  +P.  c
)  <->  ( ( b  +P.  e )  +P.  d )  <P  (
( f  +P.  c
)  +P.  b )
) )
6657, 65orbi12d 795 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
( a  +P.  f
)  <P  ( b  +P.  e )  \/  (
e  +P.  d )  <P  ( f  +P.  c
) )  <->  ( (
( a  +P.  f
)  +P.  d )  <P  ( ( b  +P.  e )  +P.  d
)  \/  ( ( b  +P.  e )  +P.  d )  <P 
( ( f  +P.  c )  +P.  b
) ) ) )
6736, 54, 663imtr4d 203 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( (
a  +P.  d )  <P  ( b  +P.  c
)  ->  ( (
a  +P.  f )  <P  ( b  +P.  e
)  \/  ( e  +P.  d )  <P 
( f  +P.  c
) ) ) )
68 ltsrprg 7880 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( a  +P.  d ) 
<P  ( b  +P.  c
) ) )
69683adant3 1020 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( a  +P.  d ) 
<P  ( b  +P.  c
) ) )
70 ltsrprg 7880 . . . . . . 7  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f >. ]  ~R  <->  ( a  +P.  f ) 
<P  ( b  +P.  e
) ) )
71703adant2 1019 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f >. ]  ~R  <->  ( a  +P.  f ) 
<P  ( b  +P.  e
) ) )
72 ltsrprg 7880 . . . . . . . 8  |-  ( ( ( e  e.  P.  /\  f  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
7372ancoms 268 . . . . . . 7  |-  ( ( ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
74733adant1 1018 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  <->  ( e  +P.  d ) 
<P  ( f  +P.  c
) ) )
7571, 74orbi12d 795 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( ( [ <. a ,  b
>. ]  ~R  <R  [ <. e ,  f >. ]  ~R  \/  [ <. e ,  f
>. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) 
<->  ( ( a  +P.  f )  <P  (
b  +P.  e )  \/  ( e  +P.  d
)  <P  ( f  +P.  c ) ) ) )
7667, 69, 753imtr4d 203 . . . 4  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  ( c  e.  P.  /\  d  e.  P. )  /\  ( e  e.  P.  /\  f  e.  P. )
)  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ->  ( [ <. a ,  b >. ]  ~R  <R  [ <. e ,  f
>. ]  ~R  \/  [ <. e ,  f >. ]  ~R  <R  [ <. c ,  d >. ]  ~R  ) ) )
772, 6, 10, 14, 763ecoptocl 6724 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
x  <R  y  ->  (
x  <R  z  \/  z  <R  y ) ) )
7877rgen3 2594 . 2  |-  A. x  e.  R.  A. y  e. 
R.  A. z  e.  R.  ( x  <R  y  -> 
( x  <R  z  \/  z  <R  y ) )
79 df-iso 4352 . 2  |-  (  <R  Or  R.  <->  (  <R  Po  R.  /\ 
A. x  e.  R.  A. y  e.  R.  A. z  e.  R.  (
x  <R  y  ->  (
x  <R  z  \/  z  <R  y ) ) ) )
801, 78, 79mpbir2an 945 1  |-  <R  Or  R.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   <.cop 3641   class class class wbr 4051    Po wpo 4349    Or wor 4350  (class class class)co 5957   [cec 6631   P.cnp 7424    +P. cpp 7426    <P cltp 7428    ~R cer 7429   R.cnr 7430    <R cltr 7436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-iplp 7601  df-iltp 7603  df-enr 7859  df-nr 7860  df-ltr 7863
This theorem is referenced by:  1ne0sr  7899  addgt0sr  7908  caucvgsrlemcl  7922  caucvgsrlemfv  7924  suplocsrlemb  7939  suplocsrlempr  7940  suplocsrlem  7941  axpre-ltirr  8015  axpre-ltwlin  8016  axpre-lttrn  8017
  Copyright terms: Public domain W3C validator