ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rint0 GIF version

Theorem rint0 3961
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 3925 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 3405 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 3936 . . . 4 ∅ = V
43ineq2i 3402 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 3528 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2250 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2278 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cin 3196  c0 3491   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-int 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator