![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ineq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ineq2 3330 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 |
This theorem is referenced by: disjpr2 3655 rint0 3881 riin0 3955 disji2 3993 xpriindim 4761 riinint 4884 reseq2 4898 csbresg 4906 resindm 4945 isoselem 5815 zfz1isolem1 10804 fsumm1 11408 ennnfonelemhf1o 12397 nninfdclemcl 12432 nninfdclemp1 12434 nninfdc 12437 ressvalsets 12506 ressbasd 12509 ressinbasd 12515 ressressg 12516 restval 12642 basis1 13212 baspartn 13215 eltg 13219 tgdom 13239 ntrval 13277 resttopon2 13345 restopnb 13348 qtopbasss 13688 |
Copyright terms: Public domain | W3C validator |