Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 |
Ref | Expression |
---|---|
ineq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 | |
2 | ineq2 3322 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: disjpr2 3647 rint0 3870 riin0 3944 disji2 3982 xpriindim 4749 riinint 4872 reseq2 4886 csbresg 4894 resindm 4933 isoselem 5799 zfz1isolem1 10775 fsumm1 11379 ennnfonelemhf1o 12368 nninfdclemcl 12403 nninfdclemp1 12405 nninfdc 12408 restval 12585 basis1 12839 baspartn 12842 eltg 12846 tgdom 12866 ntrval 12904 resttopon2 12972 restopnb 12975 qtopbasss 13315 |
Copyright terms: Public domain | W3C validator |