Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 |
Ref | Expression |
---|---|
ineq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 | |
2 | ineq2 3316 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cin 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 |
This theorem is referenced by: disjpr2 3639 rint0 3862 riin0 3936 disji2 3974 xpriindim 4741 riinint 4864 reseq2 4878 csbresg 4886 resindm 4925 isoselem 5787 zfz1isolem1 10749 fsumm1 11353 ennnfonelemhf1o 12342 nninfdclemcl 12377 nninfdclemp1 12379 nninfdc 12382 restval 12557 basis1 12645 baspartn 12648 eltg 12652 tgdom 12672 ntrval 12710 resttopon2 12778 restopnb 12781 qtopbasss 13121 |
Copyright terms: Public domain | W3C validator |