| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq2 3399 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: disjpr2 3730 rint0 3962 riin0 4037 disji2 4075 xpriindim 4860 riinint 4985 reseq2 5000 csbresg 5008 resindm 5047 isoselem 5944 zfz1isolem1 11062 fsumm1 11927 bitsinv1 12473 ennnfonelemhf1o 12984 nninfdclemcl 13019 nninfdclemp1 13021 nninfdc 13024 ressvalsets 13097 ressbasd 13100 ressinbasd 13107 ressressg 13108 restval 13278 mgpress 13894 subrngpropd 14180 subrgpropd 14217 crng2idl 14495 basis1 14721 baspartn 14724 eltg 14726 tgdom 14746 ntrval 14784 resttopon2 14852 restopnb 14855 qtopbasss 15195 |
| Copyright terms: Public domain | W3C validator |