| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| ineq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| ineq2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1d.1 | 
. 2
 | |
| 2 | ineq2 3358 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: disjpr2 3686 rint0 3913 riin0 3988 disji2 4026 xpriindim 4804 riinint 4927 reseq2 4941 csbresg 4949 resindm 4988 isoselem 5867 zfz1isolem1 10932 fsumm1 11581 ennnfonelemhf1o 12630 nninfdclemcl 12665 nninfdclemp1 12667 nninfdc 12670 ressvalsets 12742 ressbasd 12745 ressinbasd 12752 ressressg 12753 restval 12916 mgpress 13487 subrngpropd 13772 subrgpropd 13809 crng2idl 14087 basis1 14283 baspartn 14286 eltg 14288 tgdom 14308 ntrval 14346 resttopon2 14414 restopnb 14417 qtopbasss 14757 | 
| Copyright terms: Public domain | W3C validator |