Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 |
Ref | Expression |
---|---|
ineq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 | |
2 | ineq2 3298 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 cin 3097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 |
This theorem is referenced by: disjpr2 3619 rint0 3842 riin0 3916 disji2 3954 xpriindim 4717 riinint 4840 reseq2 4854 csbresg 4862 resindm 4901 isoselem 5761 zfz1isolem1 10688 fsumm1 11290 ennnfonelemhf1o 12093 restval 12296 basis1 12384 baspartn 12387 eltg 12391 tgdom 12411 ntrval 12449 resttopon2 12517 restopnb 12520 qtopbasss 12860 |
Copyright terms: Public domain | W3C validator |