ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d Unicode version

Theorem ineq2d 3405
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ineq2d  |-  ( ph  ->  ( C  i^i  A
)  =  ( C  i^i  B ) )

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineq2 3399 . 2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  i^i  A
)  =  ( C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  disjpr2  3730  rint0  3962  riin0  4037  disji2  4075  xpriindim  4860  riinint  4985  reseq2  5000  csbresg  5008  resindm  5047  isoselem  5944  zfz1isolem1  11062  fsumm1  11927  bitsinv1  12473  ennnfonelemhf1o  12984  nninfdclemcl  13019  nninfdclemp1  13021  nninfdc  13024  ressvalsets  13097  ressbasd  13100  ressinbasd  13107  ressressg  13108  restval  13278  mgpress  13894  subrngpropd  14180  subrgpropd  14217  crng2idl  14495  basis1  14721  baspartn  14724  eltg  14726  tgdom  14746  ntrval  14784  resttopon2  14852  restopnb  14855  qtopbasss  15195
  Copyright terms: Public domain W3C validator