| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq2 3368 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: disjpr2 3697 rint0 3924 riin0 3999 disji2 4037 xpriindim 4816 riinint 4939 reseq2 4954 csbresg 4962 resindm 5001 isoselem 5889 zfz1isolem1 10985 fsumm1 11727 bitsinv1 12273 ennnfonelemhf1o 12784 nninfdclemcl 12819 nninfdclemp1 12821 nninfdc 12824 ressvalsets 12896 ressbasd 12899 ressinbasd 12906 ressressg 12907 restval 13077 mgpress 13693 subrngpropd 13978 subrgpropd 14015 crng2idl 14293 basis1 14519 baspartn 14522 eltg 14524 tgdom 14544 ntrval 14582 resttopon2 14650 restopnb 14653 qtopbasss 14993 |
| Copyright terms: Public domain | W3C validator |