| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq2 3368 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: disjpr2 3697 rint0 3924 riin0 3999 disji2 4037 xpriindim 4817 riinint 4940 reseq2 4955 csbresg 4963 resindm 5002 isoselem 5891 zfz1isolem1 10987 fsumm1 11760 bitsinv1 12306 ennnfonelemhf1o 12817 nninfdclemcl 12852 nninfdclemp1 12854 nninfdc 12857 ressvalsets 12929 ressbasd 12932 ressinbasd 12939 ressressg 12940 restval 13110 mgpress 13726 subrngpropd 14011 subrgpropd 14048 crng2idl 14326 basis1 14552 baspartn 14555 eltg 14557 tgdom 14577 ntrval 14615 resttopon2 14683 restopnb 14686 qtopbasss 15026 |
| Copyright terms: Public domain | W3C validator |