ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn Unicode version

Theorem intunsn 3908
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1  |-  B  e. 
_V
Assertion
Ref Expression
intunsn  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  B
)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3901 . 2  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  |^| { B } )
2 intunsn.1 . . . 4  |-  B  e. 
_V
32intsn 3905 . . 3  |-  |^| { B }  =  B
43ineq2i 3357 . 2  |-  ( |^| A  i^i  |^| { B }
)  =  ( |^| A  i^i  B )
51, 4eqtri 2214 1  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    i^i cin 3152   {csn 3618   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-int 3871
This theorem is referenced by:  fiintim  6985
  Copyright terms: Public domain W3C validator