Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn Unicode version

Theorem intunsn 3734
 Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1
Assertion
Ref Expression
intunsn

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3727 . 2
2 intunsn.1 . . . 4
32intsn 3731 . . 3
43ineq2i 3201 . 2
51, 4eqtri 2109 1
 Colors of variables: wff set class Syntax hints:   wceq 1290   wcel 1439  cvv 2622   cun 3000   cin 3001  csn 3452  cint 3696 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-v 2624  df-un 3006  df-in 3008  df-sn 3458  df-pr 3459  df-int 3697 This theorem is referenced by:  fiintim  6695
 Copyright terms: Public domain W3C validator