ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn Unicode version

Theorem intunsn 3861
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1  |-  B  e. 
_V
Assertion
Ref Expression
intunsn  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  B
)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3854 . 2  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  |^| { B } )
2 intunsn.1 . . . 4  |-  B  e. 
_V
32intsn 3858 . . 3  |-  |^| { B }  =  B
43ineq2i 3319 . 2  |-  ( |^| A  i^i  |^| { B }
)  =  ( |^| A  i^i  B )
51, 4eqtri 2186 1  |-  |^| ( A  u.  { B } )  =  (
|^| A  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2725    u. cun 3113    i^i cin 3114   {csn 3575   |^|cint 3823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-un 3119  df-in 3121  df-sn 3581  df-pr 3582  df-int 3824
This theorem is referenced by:  fiintim  6890
  Copyright terms: Public domain W3C validator