ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqbidv GIF version

Theorem riotaeqbidv 5883
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
riotaeqbidv.1 (𝜑𝐴 = 𝐵)
riotaeqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
riotaeqbidv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqbidv
StepHypRef Expression
1 riotaeqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
21riotabidv 5882 . 2 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
3 riotaeqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
43riotaeqdv 5881 . 2 (𝜑 → (𝑥𝐴 𝜒) = (𝑥𝐵 𝜒))
52, 4eqtrd 2229 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  crio 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3841  df-iota 5220  df-riota 5880
This theorem is referenced by:  acexmidlemab  5919  grpinvfvalg  13244  opprnegg  13715
  Copyright terms: Public domain W3C validator