ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfvalg Unicode version

Theorem grpinvfvalg 13570
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfvalg  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .0.    x,  .+
Allowed substitution hints:    .+ ( y)    N( x, y)    V( x, y)    .0. ( y)

Proof of Theorem grpinvfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2  |-  N  =  ( invg `  G )
2 df-minusg 13532 . . 3  |-  invg 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
)  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
3 fveq2 5626 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpinvval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2280 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5626 . . . . . . . 8  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpinvval.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2280 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 6017 . . . . . 6  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
10 fveq2 5626 . . . . . . 7  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
11 grpinvval.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
1210, 11eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
139, 12eqeq12d 2244 . . . . 5  |-  ( g  =  G  ->  (
( y ( +g  `  g ) x )  =  ( 0g `  g )  <->  ( y  .+  x )  =  .0.  ) )
145, 13riotaeqbidv 5956 . . . 4  |-  ( g  =  G  ->  ( iota_ y  e.  ( Base `  g ) ( y ( +g  `  g
) x )  =  ( 0g `  g
) )  =  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
155, 14mpteq12dv 4165 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g )  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) )  =  ( x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
) )
16 elex 2811 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 13086 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2316 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
2221mptexd 5865 . . 3  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)  e.  _V )
232, 15, 16, 22fvmptd3 5727 . 2  |-  ( G  e.  V  ->  ( invg `  G )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
241, 23eqtrid 2274 1  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4144    Fn wfn 5312   ` cfv 5317   iota_crio 5952  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   invgcminusg 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-minusg 13532
This theorem is referenced by:  grpinvval  13571  grpinvfng  13572  grpsubval  13574  grpinvf  13575  grpinvpropdg  13603  opprnegg  14041
  Copyright terms: Public domain W3C validator