| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvfvalg | Unicode version | ||
| Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| grpinvval.b |
|
| grpinvval.p |
|
| grpinvval.o |
|
| grpinvval.n |
|
| Ref | Expression |
|---|---|
| grpinvfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.n |
. 2
| |
| 2 | df-minusg 13532 |
. . 3
| |
| 3 | fveq2 5626 |
. . . . 5
| |
| 4 | grpinvval.b |
. . . . 5
| |
| 5 | 3, 4 | eqtr4di 2280 |
. . . 4
|
| 6 | fveq2 5626 |
. . . . . . . 8
| |
| 7 | grpinvval.p |
. . . . . . . 8
| |
| 8 | 6, 7 | eqtr4di 2280 |
. . . . . . 7
|
| 9 | 8 | oveqd 6017 |
. . . . . 6
|
| 10 | fveq2 5626 |
. . . . . . 7
| |
| 11 | grpinvval.o |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2280 |
. . . . . 6
|
| 13 | 9, 12 | eqeq12d 2244 |
. . . . 5
|
| 14 | 5, 13 | riotaeqbidv 5956 |
. . . 4
|
| 15 | 5, 14 | mpteq12dv 4165 |
. . 3
|
| 16 | elex 2811 |
. . 3
| |
| 17 | basfn 13086 |
. . . . . 6
| |
| 18 | funfvex 5643 |
. . . . . . 7
| |
| 19 | 18 | funfni 5422 |
. . . . . 6
|
| 20 | 17, 16, 19 | sylancr 414 |
. . . . 5
|
| 21 | 4, 20 | eqeltrid 2316 |
. . . 4
|
| 22 | 21 | mptexd 5865 |
. . 3
|
| 23 | 2, 15, 16, 22 | fvmptd3 5727 |
. 2
|
| 24 | 1, 23 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-minusg 13532 |
| This theorem is referenced by: grpinvval 13571 grpinvfng 13572 grpsubval 13574 grpinvf 13575 grpinvpropdg 13603 opprnegg 14041 |
| Copyright terms: Public domain | W3C validator |