ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfvalg Unicode version

Theorem grpinvfvalg 12745
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfvalg  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .0.    x,  .+
Allowed substitution hints:    .+ ( y)    N( x, y)    V( x, y)    .0. ( y)

Proof of Theorem grpinvfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2  |-  N  =  ( invg `  G )
2 df-minusg 12712 . . 3  |-  invg 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
)  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
3 fveq2 5496 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpinvval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2221 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5496 . . . . . . . 8  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpinvval.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2221 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5870 . . . . . 6  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
10 fveq2 5496 . . . . . . 7  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
11 grpinvval.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
1210, 11eqtr4di 2221 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
139, 12eqeq12d 2185 . . . . 5  |-  ( g  =  G  ->  (
( y ( +g  `  g ) x )  =  ( 0g `  g )  <->  ( y  .+  x )  =  .0.  ) )
145, 13riotaeqbidv 5812 . . . 4  |-  ( g  =  G  ->  ( iota_ y  e.  ( Base `  g ) ( y ( +g  `  g
) x )  =  ( 0g `  g
) )  =  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
155, 14mpteq12dv 4071 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g )  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) )  =  ( x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
) )
16 elex 2741 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 12473 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5513 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5298 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 412 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2257 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
2221mptexd 5723 . . 3  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)  e.  _V )
232, 15, 16, 22fvmptd3 5589 . 2  |-  ( G  e.  V  ->  ( invg `  G )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
241, 23eqtrid 2215 1  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    |-> cmpt 4050    Fn wfn 5193   ` cfv 5198   iota_crio 5808  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   invgcminusg 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-minusg 12712
This theorem is referenced by:  grpinvval  12746  grpinvfng  12747  grpsubval  12749  grpinvf  12750
  Copyright terms: Public domain W3C validator