ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfvalg Unicode version

Theorem grpinvfvalg 13292
Description: The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfvalg  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .0.    x,  .+
Allowed substitution hints:    .+ ( y)    N( x, y)    V( x, y)    .0. ( y)

Proof of Theorem grpinvfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2  |-  N  =  ( invg `  G )
2 df-minusg 13254 . . 3  |-  invg 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
)  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
3 fveq2 5570 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpinvval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2255 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5570 . . . . . . . 8  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpinvval.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2255 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5951 . . . . . 6  |-  ( g  =  G  ->  (
y ( +g  `  g
) x )  =  ( y  .+  x
) )
10 fveq2 5570 . . . . . . 7  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
11 grpinvval.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
1210, 11eqtr4di 2255 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
139, 12eqeq12d 2219 . . . . 5  |-  ( g  =  G  ->  (
( y ( +g  `  g ) x )  =  ( 0g `  g )  <->  ( y  .+  x )  =  .0.  ) )
145, 13riotaeqbidv 5892 . . . 4  |-  ( g  =  G  ->  ( iota_ y  e.  ( Base `  g ) ( y ( +g  `  g
) x )  =  ( 0g `  g
) )  =  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
155, 14mpteq12dv 4125 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g )  |->  ( iota_ y  e.  ( Base `  g
) ( y ( +g  `  g ) x )  =  ( 0g `  g ) ) )  =  ( x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
) )
16 elex 2782 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 12809 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5587 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5370 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2291 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
2221mptexd 5801 . . 3  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)  e.  _V )
232, 15, 16, 22fvmptd3 5667 . 2  |-  ( G  e.  V  ->  ( invg `  G )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
241, 23eqtrid 2249 1  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    |-> cmpt 4104    Fn wfn 5263   ` cfv 5268   iota_crio 5888  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   0gc0g 13006   invgcminusg 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-minusg 13254
This theorem is referenced by:  grpinvval  13293  grpinvfng  13294  grpsubval  13296  grpinvf  13297  grpinvpropdg  13325  opprnegg  13763
  Copyright terms: Public domain W3C validator